
Graph Convolutional Neural
Networks for Web-Scale
Recommender Systems
Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai,
William L. Hamilton & Jure Leskovec
KDD 2018 [https://arxiv.org/abs/1806.01973]

Presented by Cătălina Cangea

https://arxiv.org/abs/1806.01973

Recommender systems

● Graph-structured data essential for recommendation applications
(can exploit user-to-item relations and social graphs)

● Item embeddings learned with deep models can be re-used across
multiple tasks (e.g. item recommendation and collection
recommendation - playlists, news feed)

● GCN-based methods successful on recommender system
benchmarks

2

Theory → scale?

3

● Challenge: apply GCN-based training and inference to graphs
with billions of nodes and tens of billions of edges

● Recommender systems of this kind perform operations using the
full graph Laplacian during training, which is problematic if:
○ There are billions of nodes in the graph
○ The structure of the graph is constantly evolving

PinSage

● Used for web-scale recommendation at Pinterest
● GCN-based algorithm which leverages random walks to generate

node embeddings that incorporate features and graph structure
● Largest application of deep graph embeddings:

○ 3BN nodes (“pins” and “boards”), 18BN edges
○ (about 10,000x larger than typical GCN applications)

4

Key insights

5

● Localized convolutions:

○ Sampling node neighborhoods through short random walks
(also gives importance scores)

○ Convolutional modules share parameters across nodes
● Importance pooling: use scores to weight node features (+46%)
● Curriculum training: increase difficulty of examples (+12%)
● Efficiency: producer-consumer minibatches, MapReduce

6

Figure 1. Embeddings for each node are computed by a different
network, but parameters are shared among boxes with same shading.

Graph problem setup

● Pinterest: content discovery application
○ Pins (visual links to online content) - 2BN
○ Boards (collections of thematically related pins) - 1BN

● Model as bipartite graph (V = I U C):
○ I - pins, C - boards
○ 18BN edges (pin-board)

● A pin u has real-valued attributes x
u

(text and image features)

7

8

Figure 2. An input graph (left) and the 2-level network used to
compute the embedding of node A (right).

Importance-based neighbor sampling

● Previous approaches: k-hop graph neighborhoods
● PinSage:

○ Start random walk from u
○ Compute L1-normalized visit count of nodes
○ N(u) = T most “influential” neighbors of node u (having the

highest visit counts) → set of weights α

9

10

weighted sum

weights

11

Training

● Labelled pairs of items: L = {(q, i) | item i is a good

recommendation candidate for query q}
● Goal: output embeddings of q and i are close to each other

12

Loss function

● Maximize inner product of positive examples (q is related to i)
● Make inner product of negative examples (q is unrelated to n

k

)
smaller than the one of the positive example by Δ

● For a pair of embeddings (z

q

, z
i

) : (q, i) ∈ L, the loss function is:

13

Negative sampling

14

● Approximate the normalization factor of edge
likelihood

● Sample 500 negative items shared across all
training examples in each minibatch

● Include “hard” negative examples:
○ Somewhat relevant to q, but not as related as i
○ Randomly sample items with

Personalized PageRank score ∈ [2000, 5000]

Curriculum learning

15

● Using negative items requires 2x epochs for convergence
● First epoch: no negative items used → find area in parameter

space with small loss
● Gradually add negative items, focusing model on learning to

distinguish between highly related and somewhat related items
○ At epoch n, have n - 1 hard negative items for each item

● Pairs of pins (q, i): a user interacted with pin i immediately
after interacting with pin q

● 1.2BN pairs of positive examples (+500 negative per minibatch,
6 hard negative per pin) → 7.5BN for training

● Only train on subset of Pinterest graph, generate embeddings
for entire graph using a MapReduce pipeline

Experimental setup

16

● Each pin contains an image and text annotations
● Concatenate:

○ Visual embeddings (4096-D, 6th layer of VGG-16)
○ Textual embeddings (256-D, Word2Vec)
○ Log-degree of pin in the graph

Features used

17

18

Figure 3. MapReduce-based node embedding computation; similar
for higher layers (inputs are representations from previous layers).

● Visual: use nearest-neighbors of deep visual embeddings to make
recommendations

● Annotation: use annotation embeddings
● Combined: concatenate visual and annotation embeddings, pass

through 2-layer MLP
● Pixie: biased random walks from q, recommend items with top K

ranking scores (Pinterest SOTA for some recommendation tasks)

Baselines

19

20

User studies

21

22

Spread of pairwise distance distributions

Ablation studies

23

% of times where i ∈ NN

q

24

Future directions?

● The whole training process is based on (q, i) pairs, so would be
interesting to improve informativeness of this kind of link

● Relate boards as well, not only pins
● Weight relationship by:

○ Frequency of user’s interaction with other pins that are close
in the t-SNE representation

○ Some function of user statistics

25

26

Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk

www.cst.cam.ac.uk/~ccc53/

mailto:Catalina.Cangea@cst.cam.ac.uk
http://www.cl.cam.ac.uk/~ccc53/

