Graph Convolutional Neural Networks for Web-Scale Recommender Systems

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton & Jure Leskovec KDD 2018 [https://arxiv.org/abs/1806.01973]

Presented by Cătălina Cangea

Recommender systems

- Graph-structured data essential for recommendation applications (can exploit *user-to-item relations* and *social graphs*)
- Item embeddings learned with deep models can be re-used across multiple tasks (e.g. *item* recommendation and *collection* recommendation playlists, news feed)
- GCN-based methods successful on recommender system benchmarks

Theory \rightarrow scale?

- Challenge: apply GCN-based training and inference to graphs with *billions* of nodes and *tens of billions* of edges
- Recommender systems of this kind perform operations using the full graph Laplacian during training, which is problematic if:
 - There are billions of nodes in the graph
 - The structure of the graph is *constantly evolving*

PinSage

- Used for web-scale recommendation at Pinterest
- GCN-based algorithm which leverages random walks to generate node embeddings that incorporate features and graph structure
- Largest application of deep graph embeddings:
 - 3BN nodes ("pins" and "boards"), 18BN edges
 - o (about 10,000x larger than typical GCN applications)

Key insights

Localized convolutions:

- Sampling node neighborhoods through short random walks (also gives importance scores)
- Convolutional modules share parameters across nodes
- **Importance pooling:** use scores to weight node features (+46%)
- **Curriculum training:** increase difficulty of examples (+12%)
- Efficiency: producer-consumer minibatches, MapReduce

Figure 1. Embeddings for each node are computed by a different network, but parameters are shared among boxes with same shading.

Graph problem setup

- Pinterest: content discovery application
 - Pins (visual links to online content) 2BN
 - Boards (collections of thematically related pins) 1BN
- Model as bipartite graph ($V = I \cup C$):
 - \circ *I* pins, *C* boards
 - 18BN edges (pin-board)
- A pin u has real-valued attributes x_u (text and image features)

Figure 2. An input graph (*left*) and the 2-level network used to compute the embedding of node \mathbf{A} (*right*).

Importance-based neighbor sampling

- Previous approaches: *k*-hop graph neighborhoods
- PinSage:
 - Start random walk from u
 - Compute L1-normalized visit count of nodes
 - N(u) = T most "influential" neighbors of node u (having the highest visit counts) \rightarrow set of weights α

Algorithm 1: CONVOLVE

Input: Current embedding \mathbf{z}_u for node u; set of neighbor embeddings $\{\mathbf{z}_{v}|v\in\mathcal{N}(u)\}$, set of neighbor weights α ; symmetric vector function $\gamma(\cdot)$ weighted sum

Output: New embedding $\mathbf{z}_{u}^{\text{NEW}}$ for node u

- 1 $\mathbf{n}_{u} \leftarrow \gamma \left(\left\{ \text{ReLU} \left(\mathbf{Q} \mathbf{h}_{v} + \mathbf{q} \right) \mid v \in \mathcal{N}(u) \right\} \right) \right)$ weights
 2 $\mathbf{z}_{u}^{\text{NEW}} \leftarrow \text{ReLU} \left(\mathbf{W} \cdot \text{concat}(\mathbf{z}_{u}, \mathbf{n}_{u}) + \mathbf{w} \right)$;
- $\mathbf{z}_{u}^{\text{NEW}} \leftarrow \mathbf{z}_{u}^{\text{NEW}} / \|\mathbf{z}_{u}^{\text{NEW}}\|_{2}$

Algorithm 2: MINIBATCH

```
Input :Set of nodes \mathcal{M} \subset \mathcal{V}; depth parameter K;
                    neighborhood function \mathcal{N}: \mathcal{V} \to 2^{\mathcal{V}}
     Output: Embeddings \mathbf{z}_u, \forall u \in \mathcal{M}
     /* Sampling neighborhoods of minibatch nodes.
                                                                                                         */
 1 S^{(K)} \leftarrow M:
 2 for k = K, ..., 1 do
         S^{(k-1)} \leftarrow S^{(k)}:
 for u \in S^{(k)} do
           S^{(k-1)} \leftarrow S^{(k-1)} \cup \mathcal{N}(u);
           end
 7 end
     /* Generating embeddings
                                                                                                         */
 \mathbf{s} \ \mathbf{h}_{u}^{(0)} \leftarrow \mathbf{x}_{u}, \forall u \in \mathcal{S}^{(0)};
 9 for k = 1, ..., K do
          for u \in S^{(k)} do
10
            \mathcal{H} \leftarrow \left\{ \mathbf{h}_v^{(k-1)}, \forall v \in \mathcal{N}(u) \right\};
11
           \mathbf{h}_{u}^{(k)} \leftarrow \text{convolve}^{(k)} \left( \mathbf{h}_{u}^{(k-1)}, \mathcal{H} \right)
          end
13
14 end
15 for u \in \mathcal{M} do
\mathbf{z}_u \leftarrow \mathbf{G}_2 \cdot \text{ReLU}\left(\mathbf{G}_1\mathbf{h}_u^{(K)} + \mathbf{g}\right)
17 end
```

Training

- Labelled pairs of items: $L = \{(q, i) \mid \text{item } i \text{ is a good recommendation candidate for query } q \}$
- Goal: output embeddings of *q* and *i* are close to each other

Loss function

- Maximize inner product of positive examples (q is related to i)
- Make inner product of negative examples (q is unrelated to n_k) smaller than the one of the positive example by Δ
- For a pair of embeddings (z_q, z_i) : $(q, i) \in L$, the loss function is:

$$J_{\mathcal{G}}(\mathbf{z}_{q}\mathbf{z}_{i}) = \mathbb{E}_{n_{k} \sim P_{n}(q)} \max\{0, \mathbf{z}_{q} \cdot \mathbf{z}_{n_{k}} - \mathbf{z}_{q} \cdot \mathbf{z}_{i} + \Delta\}$$

Negative sampling

- Approximate the normalization factor of edge likelihood
- Sample 500 negative items *shared* across all training examples in each minibatch
- Include "hard" negative examples:
 - Somewhat relevant to *q*, but not as related as *i*
 - Randomly sample items with
 Personalized PageRank score ∈ [2000, 5000]

Query

Positive Example

Hard Negative

Curriculum learning

- Using negative items requires 2x epochs for convergence
- First epoch: no negative items used → find area in parameter space with small loss
- Gradually add negative items, focusing model on learning to distinguish between highly related and somewhat related items
 - \circ At epoch n, have n-1 hard negative items for each item

Experimental setup

- Pairs of pins (*q*, *i*): a user interacted with pin *i* immediately after interacting with pin *q*
- 1.2BN pairs of positive examples (+500 negative per minibatch,
 6 hard negative per pin) → 7.5BN for training
- Only train on subset of Pinterest graph, generate embeddings for entire graph using a MapReduce pipeline

Features used

- Each pin contains an image and text annotations
- Concatenate:
 - Visual embeddings (4096-D, 6th layer of VGG-16)
 - Textual embeddings (256-D, Word2Vec)
 - Log-degree of pin in the graph

Figure 3. MapReduce-based node embedding computation; similar for higher layers (inputs are representations from previous layers).

Baselines

- **Visual**: use nearest-neighbors of deep visual embeddings to make recommendations
- Annotation: use annotation embeddings
- **Combined**: concatenate visual and annotation embeddings, pass through 2-layer MLP
- **Pixie**: biased random walks from *q*, recommend items with top *K* ranking scores (Pinterest SOTA for some recommendation tasks)

User studies

Methods	Win	Lose	Draw	Fraction of wins
PinSage vs. Visual	28.4%	21.9%	49.7%	56.5%
PinSage vs. Annot.	36.9%	14.0%	49.1%	72.5%
PinSage vs. Combined	22.6%	15.1%	57.5%	60.0%
PinSage vs. Pixie	32.5%	19.6%	46.4%	62.4%

Table 2: Head-to-head comparison of which image is more relevant to the recommended query image.

Spread of pairwise distance distributions

Ablation studies

 $MRR = \frac{1}{n} \sum_{(q,i) \in \mathcal{L}} \frac{1}{\left\lceil R_{i,q}/100 \right\rceil}$

%	of	times	wh	ere	i	$\in N$	V
	•						а

Method	Hit-rate	MRR
Visual	17%	0.23
Annotation	14%	0.19
Combined	27%	0.37
max-pooling	39%	0.37
mean-pooling	41%	0.51
mean-pooling-xent	29%	0.35
mean-pooling-hard	46%	0.56
PinSage	67%	0.59

Figure 6: t-SNE plot of item embeddings in 2 dimensions.

Future directions?

- The whole training process is based on (q, i) pairs, so would be interesting to improve informativeness of this kind of link
- Relate boards as well, not only pins
- Weight relationship by:
 - Frequency of user's interaction with other pins that are close in the t-SNE representation
 - Some function of user statistics

Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk

www.cst.cam.ac.uk/~ccc53/