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Recommender systems

● Graph-structured data essential for recommendation applications 
(can exploit user-to-item relations and social graphs)

● Item embeddings learned with deep models can be re-used across 
multiple tasks (e.g. item recommendation and collection 
recommendation - playlists, news feed)

● GCN-based methods successful on recommender system 
benchmarks
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Theory → scale?
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● Challenge: apply GCN-based training and inference to graphs 
with billions of nodes and tens of billions of edges

● Recommender systems of this kind perform operations using the 
full graph Laplacian during training, which is problematic if:
○ There are billions of nodes in the graph
○ The structure of the graph is constantly evolving



PinSage

● Used for web-scale recommendation at Pinterest
● GCN-based algorithm which leverages random walks to generate 

node embeddings that incorporate features and graph structure
● Largest application of deep graph embeddings:

○ 3BN nodes (“pins” and “boards”), 18BN edges
○ (about 10,000x larger than typical GCN applications)
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Key insights
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● Localized convolutions:

○ Sampling node neighborhoods through short random walks 
(also gives importance scores)

○ Convolutional modules share parameters across nodes
● Importance pooling: use scores to weight node features (+46%)
● Curriculum training: increase difficulty of examples (+12%)
● Efficiency: producer-consumer minibatches, MapReduce
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Figure 1. Embeddings for each node are computed by a different 
network, but parameters are shared among boxes with same shading.



Graph problem setup

● Pinterest: content discovery application
○ Pins (visual links to online content) - 2BN
○ Boards (collections of thematically related pins) - 1BN

● Model as bipartite graph (V = I U C):
○ I - pins,  C - boards
○ 18BN edges (pin-board)

● A pin u has real-valued attributes x
u 

(text and image features)
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Figure 2. An input graph (left) and the 2-level network used to 
compute the embedding of node A (right).



Importance-based neighbor sampling

● Previous approaches: k-hop graph neighborhoods
● PinSage:

○ Start random walk from u
○ Compute L1-normalized visit count of nodes
○ N(u) = T most “influential” neighbors of node u (having the 

highest visit counts) → set of weights α
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weighted sum

weights
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Training

● Labelled pairs of items: L = {(q, i) | item i is a good 

recommendation candidate for query q}
● Goal: output embeddings of q and i are close to each other
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Loss function

● Maximize inner product of positive examples (q is related to i)
● Make inner product of negative examples (q is unrelated to n

k

) 
smaller than the one of the positive example by Δ

● For a pair of embeddings (z

q

, z
i

) : (q, i) ∈ L, the loss function is:
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Negative sampling
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● Approximate the normalization factor of edge 
likelihood

● Sample 500 negative items shared across all 
training examples in each minibatch

● Include “hard” negative examples:
○ Somewhat relevant to q, but not as related as i
○ Randomly sample items with

Personalized PageRank score ∈ [2000, 5000]



Curriculum learning
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● Using negative items requires 2x epochs for convergence
● First epoch: no negative items used → find area in parameter 

space with small loss
● Gradually add negative items, focusing model on learning to 

distinguish between highly related and somewhat related items
○ At epoch n, have n - 1 hard negative items for each item



● Pairs of pins (q, i): a user interacted with pin i immediately 
after interacting with pin q

● 1.2BN pairs of positive examples (+500 negative per minibatch, 
6 hard negative per pin) → 7.5BN for training

● Only train on subset of Pinterest graph, generate embeddings 
for entire graph using a MapReduce pipeline

Experimental setup
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● Each pin contains an image and text annotations
● Concatenate:

○ Visual embeddings (4096-D, 6th layer of VGG-16)
○ Textual embeddings (256-D, Word2Vec)
○ Log-degree of pin in the graph

Features used
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Figure 3. MapReduce-based node embedding computation; similar 
for higher layers (inputs are representations from previous layers).



● Visual: use nearest-neighbors of deep visual embeddings to make 
recommendations

● Annotation: use annotation embeddings
● Combined: concatenate visual and annotation embeddings, pass 

through 2-layer MLP
● Pixie: biased random walks from q,  recommend items with top K 

ranking scores (Pinterest SOTA for some recommendation tasks)

Baselines
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User studies
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Spread of pairwise distance distributions



Ablation studies
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% of times where i ∈ NN

q
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Future directions?

● The whole training process is based on (q, i) pairs, so would be 
interesting to improve informativeness of this kind of link

● Relate boards as well, not only pins
● Weight relationship by:

○ Frequency of user’s interaction with other pins that are close 
in the t-SNE representation

○ Some function of user statistics
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Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk 

www.cst.cam.ac.uk/~ccc53/ 
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