
Towards Sparse Hierarchical Graph
Classifiers
Cătălina Cangea*, Petar Veličković*, Nikola Jovanović, Thomas Kipf, Pietro Liò

NIPS 2018 Relational Representation Learning Workshop [arxiv.org/abs/1811.01287]

Graph Representation Reading Group, Mila 15 November 2018

arxiv.org/abs/1811.01287


Graph classification

I Typical machine learning task aimed at graph-structured
data (e.g. want to classify molecular structures, citation
networks, social circles)

I Graphs represent the generalization of images (grid-like
graphs)→ aim to extend readily established image
classification techniques

I Typical image classification pipeline: alternate between
convolution (feature detection) and pooling
(down-sampling)—want this for graphs!

2 / 17



Existing work

I Graph convolutional layers: plenty!
◦ Spectral: Bruna et al.(2014), Defferrard et al.(2016), Kipf et

al.(2017)
◦ Message-passing: Gilmer et al.(2017)
◦ Attention-based: Monti et al.(2016), Veličković et al.(2017)

I Pooling mechanisms: comparatively few...
◦ Globally pool after each/the final message-passing step
◦ Progressively coarsen the graph—most approaches

assume a pre-defined assignment of nodes to clusters
◦ Learn a differentiable pooling mechanism based on the

structure of the data: Ying et al.(2018), Anon.(2018)

3 / 17



Hierarchical (pooling) strategies

I DiffPool: compute soft clustering assignments of nodes
from the original graph to nodes from the resulting graph

I End-to-end trainable architecture with SOTA results
I Main issue: soft clustering assignments require storing

the assignment matrix and therefore O(kV2) memory!

I Graph U-Net: does not suffer from the issue above, but the
architecture was not evaluated on classification task
benchmarks

4 / 17



Our contributions

I An intuitive architecture for graph classification that closely
resembles the computation model for image classification

I Results comparable to state-of-the-art on classification
benchmark tasks

I A drastic reduction in the GPU memory requirement (from
O(V 2) to O(V + E))

5 / 17



Model

I Input graph→ a matrix of node features, X ∈ RN×F , and an
adjacency matrix, A ∈ RN×N

I A is binary and symmetric

I If the graph is featureless, use 1-hot encoding of node
degree information to construct X

I A CNN-inspired network for graph classification should
contain the following layers: convolutional, pooling,
readout (i.e. flattening layer in an image CNN used for the
final prediction)

6 / 17



Model

7 / 17



Convolutional layer

I Apply the mean-pooling propagation rule (as in GCN or
Const-GAT):

MP(X,A) = σ
(
D̂−1ÂXΘ+ XΘ′

)

I Â = A + IN is the adjacency matrix with self-loops
I D̂ is the degree matrix: D̂ii =

∑
j Âij

8 / 17



Pooling layer

I Use Graph U-Net architecture to reduce the number of
nodes N via pooling ratio k ∈ (0,1]

I Layer outputs dkNe nodes

I Learn projection score ~p used as gating values→ ensure
lower scoring nodes retain comparatively less features

9 / 17



Pooling layer—cont’d

I Obtain pooled graph (X′,A′) as:

~y =
X~p
‖~p‖

,

~i = top-k(~y , k),
X′ = (X · tanh(~y))~i ,
A′ = A~i,~i

I This only requires a pointwise projection operation
and slicing into the original matrices!

10 / 17



Readout layer

I Want “flattening” operation analogous to image CNNs
I Take the average and max of all learnt node embeddings

for output graph (Xk ,Ak) of the k -th block:

~sk =
1

Nk

Nk∑
i=1

~xk
i ‖

Nk

max
i=1

~xk
i

I Inspired by JK-net, summarise the graph by summing:

~s =
K∑

k=1

~sk

I An MLP predicts the class for ~s at the “tail” of the model

11 / 17



Experiments

I Benchmark datasets: Enzymes, Proteins, DD, Collab
I 10-fold cross-validation, compare to Ying et al.(2018)

I Three {GCN layer, pooling layer} blocks
I Preserve k = 80% of the nodes on each pool

12 / 17



Results

13 / 17



Memory usage

14 / 17



Qualitative analysis

15 / 17



Future directions

I Apply the computation model to large datasets
(particularly relevant for the neuroscience domain, where
brain meshes are encoded by graphs with +100K nodes).

I Improve the pooling mechanism (e.g. by making the
pooling ratio k learnable).

I Make the “mirroring” operation (unpooling) independent of
the pooling results.

16 / 17



Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk

www.cst.cam.ac.uk/~ccc53/

17 / 17

Catalina.Cangea@cst.cam.ac.uk
www.cst.cam.ac.uk/~ccc53/

