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Graph classification

» Typical machine learning task aimed at graph-structured
data (e.g. want to classify molecular structures, citation
networks, social circles)

» Graphs represent the generalization of images (grid-like
graphs) — aim to extend readily established image
classification techniques

» Typical image classification pipeline: alternate between
convolution (feature detection) and pooling
(down-sampling)—want this for graphs!
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Existing work

» Graph convolutional layers: plenty!
o Spectral: Bruna et al.(2014), Defferrard et al.(2016), Kipf et
al.(2017)
o Message-passing: Gilmer et al.(2017)
o Attention-based: Monti et al.(2016), VeliCkovi¢ et al.(2017)

» Pooling mechanisms: comparatively few...
o Globally pool after each/the final message-passing step
o Progressively coarsen the graph—most approaches
assume a pre-defined assignment of nodes to clusters
o Learn a differentiable pooling mechanism based on the
structure of the data: Ying et al.(2018), Anon.(2018)
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Hierarchical (pooling) strategies

DiffPool: compute soft clustering assignments of nodes
from the original graph to nodes from the resulting graph

End-to-end trainable architecture with SOTA results

Main issue: soft clustering assignments require storing
the assignment matrix and therefore O(kV2) memory!
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Graph U-Net: does not suffer from the issue above, but the
architecture was not evaluated on classification task
benchmarks

v
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Our contributions

» An intuitive architecture for graph classification that closely
resembles the computation model for image classification

» Results comparable to state-of-the-art on classification
benchmark tasks

» A drastic reduction in the GPU memory requirement (from
O(V?)to O(V + E))
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Model

v

Input graph — a matrix of node features, X € RV*F, and an
adjacency matrix, A € RVxN

v

A is binary and symmetric

v

If the graph is featureless, use 1-hot encoding of node
degree information to construct X

A CNN-inspired network for graph classification should
contain the following layers: convolutional, pooling,
readout (i.e. flattening layer in an image CNN used for the
final prediction)

v
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predict

Figure 1: The full pipeline of our model (for ¥ = 0.5), leveraging several stacks of interleaved
convolutional/pooling layers (that, unlike DiffPool, drop rather than aggregate nodes), as well as a
JK-net-style summary, combining information at different scales.
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Convolutional layer

» Apply the mean-pooling propagation rule (as in GCN or
Const-GAT):

MP(X,A) = o(D~"AX® + X©')

» A = A + 1y is the adjacency matrix with self-loops
> D is the degree matrix: D; = 3, A;
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Pooling layer

» Use Graph U-Net architecture to reduce the number of
nodes N via pooling ratio k € (0,1]

» Layer outputs [kN]| nodes

» Learn projection score p used as gating values — ensure
lower scoring nodes retain comparatively less features
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Pooling layer—cont'd

» Obtain pooled graph (X', A’) as:

- Xp
Y=l

i = top-k(y, k),
X' = (X - tanh(§));
A=A

» This only requires a pointwise projection operation
and slicing into the original matrices!
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Readout layer

» Want “flattening” operation analogous to image CNNs
» Take the average and max of all learnt node embeddings
for output graph (Xk, A¥) of the k-th block:

= Nk Z Hmax
» Inspired by JK-net, summarise the graph by summing:
K
» An MLP predicts the class for s at the “tail” of the model
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Experiments

v

Benchmark datasets: Enzymes, Proteins, DD, Collab
10-fold cross-validation, compare to Ying et al.(2018)

v

v

Three {GCN layer, pooling layer} blocks
Preserve k = 80% of the nodes on each pool

v
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Results

Datasets
Model Enzymes D&D  Collab  Proteins
Graphlet 41.03 74.85 64.66 7291
Shortest-path 42.32 78.86 59.10 76.43
1-WL 53.43 74.02 78.61  73.76
WL-QA 60.13 79.04 80.74  75.26
PatchySAN - 76.27 72.60  75.00
GraphSAGE 54.25 7542 6825  70.48
ECC 53.50 74.10 67.79  72.65
Set2Set 60.15 78.12 7175  74.29
SortPool 57.12 79.37 7376  75.54
DiffPool-Det 58.33 7547 8213  75.62
DiffPool-NoLP  62.67 79.98 75.63 7742
DiffPool 64.23 81.15 7550  78.10
Ours 64.17 78.59 7454  75.46
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Memory us

GPU Memory Usage
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Figure 2: GPU memory usage of our method (with no pooling; £ = 1.0) and DiffPool (k = 0.25)
during training on Erd6s-Rényi graphs [9] of varying node sizes (and |E| = 2|V|). Both methods ran
with 128 input and hidden features, and three Conv-Pool layers. “OOM” denotes out-of-memory.




Qualitative analysis

t-SNE of the model outputs for Collab
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Future directions

» Apply the computation model to large datasets
(particularly relevant for the neuroscience domain, where
brain meshes are encoded by graphs with +100K nodes).

» Improve the pooling mechanism (e.g. by making the
pooling ratio k learnable).

» Make the “mirroring” operation (unpooling) independent of
the pooling results.
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Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk
www.cst.cam.ac.uk/~cccb3/
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