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RL agents with dependent controllers

e Common RL: concatenation of observations passed through an
MLP to learn agent policy
® [Longer training times and exposure to environment needed to

discover latent relationships between observations, such as...

— agent structure! (i.e. joints with links/dependencies)



RL agents with dependent controllers

® Actions taken by a joint/body should depend on:

o Its own observations (previous work)

o Actions of other joints (this paper)




NerveNet

e Exploit the body structure of an agent and physical dependencies
® Agent policy - Graph Neural Network model
® Main idea
O Propagate information between different parts of the body
along the graph structure

O Qutput action probabilities for each part



Contributions

® Transferable and generalized features obtained by placing prior on

agent structure using GNN model
RL benchmarks: results comparable to SOTA MLP-based models

® Structure transfer and multi-task learning: better results



Graph construction

® Use tree graphs from MuJoCo

® Assume two types of nodes:
o Dbody (e.g. Thigh, Shin in humanoid)
o Jjoint (e.g. Knee)

e Single node of type root - observes additional information
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Overview of RL setting

® States: graph structure with incoming node features
® Actions: move joint nodes
e Observations:
O for joint nodes: angular velocity, twist angle, torque,
position
o for body nodes: velocity, inertia, force

® Rewards: task-defined (e.g. +speed, -energy cost)



Overview of RL setting

e PPO (proximal policy optimization) (Schulman et al. (2017))
® Maximize cumulative reward: J [ny
® Minimize KL-divergence of neW/ old policy penalty term and
value function loss
J(8) =7(8) = BLxcL(6) — aLv (6)
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NerveNet as policy network

® 3 component models
O Input
o Propagation (GNN with synchronous message-passing)
O  Output
® Ateach (RL environment) step: receive observation, perform T

propagation steps, decide action for each node

10



Notation

G = (V, E), outgoing edges Nou:(), incoming N, (u)
Node types Pu € {1,2,..., P}
Edge types C(y) € 11,2,...,C}

Time:

O T in RL environment

0 ¢ in NerveNet propagation
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Input model

® At each environment time step, for node u:

ho — En(mu)

u

e Obtain fixed size vector at propagation step O
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Propagation model (I)

® Message computation (for each outgoing edge from u):
t t
m(u,v) = Mc(u,v) (hu)

® Edges of same type share instance of message function
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Propagation model (II)

® Message aggregation (from all incoming edges of u):

i, = A({ml, [0 € Nin(u)})
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Propagation model (III)

e States update on every node’s state vector:
t+1 _ t =t
h’u T Upu(hu7mu)

e U canbe GRU, LSTM, MLP

® Nodes of same type share instance of update function
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Output model

® For each node u with an associated controller, predict mean value

of action applied to actuator (with T = 3..6):
T

® Stochastic policy:

T|3 H URY u|S H /271'0'2 U_Mu)z/@ai)

ueQ ue®
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Putting it all together
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Value network

e Obtain state value Vjy (ST) for observation §7

® Three alternatives
o NerveNet-MLP (GNN for policy, MLP for value)
o NerveNet-2 (separate GNNs for policy and value)
o NerveNet-1 (same GNN for policy and value)
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Evaluation

1. Comparison on standard benchmarks of MuJoCo in Gym
2. Structure transfer learning

3. Multi-task learning

4. Robustness

5. Interpretation

6.

Comparison of model variants
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Comparison on continuous control MuJoCo

® Baselines
o Standard MLP models (Schulman et al. (2017))
O TreeNet:
m remove physical structure, introduce super-node as root,
connect it to all nodes in the graph
m similar propagation model: (1) aggregate messages from

all children; (2) give state vector of root to output model
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HalfCheetah
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Structure transfer learning tasks

® Size transfer:
O train on smaller agent
O apply on larger agent
® Disability transfer:
O train on original agent

o apply on “crippled” agent (some components disabled)
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Models

® NervelNet:
o reuse all weights of small-agent model (corresponding joints)
e MLP pre-trained (MLPP):
O reuse weights from hidden to output layer
e MLP activation assigning (MLPAA):
O reuse weights of small-agent model as partial weights of the
large-agent model, set the remaining to O
® TreelNet:

O same reassignment as for MLPAA
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Environments (I)

® Centipede

O

o O O O

Repetitive body structure (torso with 2 legs attached)
Leg=thigh+ shin

Goal: run as fast as possible in the y-direction

Agents of different lengths (4..40) for size transfer
CrippleCentipede (2 back legs off) for disability transfer
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Tasks
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CentipedeSix to CentipedeEight
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Figure 5: (a), (b): Results of fine-tuning for size transfer experiments. (c), (d) Results of fine-tuning
for disability transfer experiments.

26




Environments (II)

® OSnake
O Based on Swimmer model in Gym

O Goal: move as fast as possible

SnakeSix Swimmer
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Figure 7: Results of finetuning on snake environments.
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Multi-task learning

® Walker task-set
o five 2D walkers: {HalfHumanoid, Hopper, Horse,
Ostrich, Wolf}
® Very different dynamics across agents
O First two: MuJoCo
O Last three: natural animals

® Test ability to control multiple agents with one network
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Model HalfHumanoid | Hopper | Ostrich Wolf Horse | Average

MILP Reward I'FI5.75 1369.59 | 1198.88 | 1249.23 | 2084.07 /
Ratio 57.T% 62.0% 48.2% 54.5% 69.7% 58.6%

TreeNet Reward 237.81 417.27 | 224.07 | 247.03 | 223.34 /
Ratio 79.3% 98.0% 574% | 141.2% | 99.2% 94.8%

NerveNet Reward 2536.52 2113.56 | 1714.63 | 2054.54 | 2343.62 /
Ratio 96.3% 101.8% | 98.8% | 105.9% | 106.4% | 101.8%

Table 2: Results of Multi-task learning, with comparison to the single-task baselines. For three
models, the first row is the mean reward of each model of the last 40 iterations. The second row
indicates the percentage of the performance of the multi-task model compared with the single-task
baseline of each model.
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Robustness of learned policies

® Perturb agent parameters to simulate realistic setting

O Mass of rigid bodies in MuJoCo

O Scale of forces on the joints

Model Halfthumanoid | Hopper Wolf Ostrich | Horse | Average

Mg MLP 33.28% 74.04% | 94.68% | 59.23% | 40.61% | 60.37%
NerveNet 95.87% 93.24% | 90.13% | 80.2% | 69.23% | 85.73%

TS MLP 25.96% 21.77% | 27.32% | 30.08% | 19.80% | 24.99%
& NerveNet 31.11% 42.20% | 42.84% | 31.41% | 36.54% | 36.82%
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Feature distribution
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e PCA — represent state vectors of output layer

® [nvariant representation across pairs of legs
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Walk cycle

Feature
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Comparison of model variants
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® NerveNet-1 policy/value network sharing affects PPO
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Main takeaways

Exploit physical structure of RL agents

GNN for agent policy

Message passing via edges corresponding to physical links
SOTA on MuJoCo benchmarks

Strong transfer capabilities (including zero-shot)
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Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk

www.cl.cam.ac.uk/~ccc53/
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