
NerveNet: Learning Structured
Policy with Graph Neural
Networks

Tingwu Wang, Renjie Liao, Jimmy Ba & Sanja Fidler
ICLR 2018 [openreview.net/forum?id=S1sqHMZCb]

Presented by Cătălina Cangea

https://openreview.net/forum?id=S1sqHMZCb

RL agents with dependent controllers

● Common RL: concatenation of observations passed through an
MLP to learn agent policy

● Longer training times and exposure to environment needed to
discover latent relationships between observations, such as…

→ agent structure! (i.e. joints with links/dependencies)

2

RL agents with dependent controllers

● Actions taken by a joint/body should depend on:
○ Its own observations (previous work)
○ Actions of other joints (this paper)

3

NerveNet

● Exploit the body structure of an agent and physical dependencies
● Agent policy → Graph Neural Network model
● Main idea

○ Propagate information between different parts of the body
along the graph structure

○ Output action probabilities for each part

4

● Transferable and generalized features obtained by placing prior on
agent structure using GNN model

● RL benchmarks: results comparable to SOTA MLP-based models
● Structure transfer and multi-task learning: better results

Contributions

5

● Use tree graphs from MuJoCo
● Assume two types of nodes:

○ body (e.g. Thigh, Shin in humanoid)
○ joint (e.g. Knee)

● Single node of type root - observes additional information

Graph construction

6

7

● States: graph structure with incoming node features
● Actions: move joint nodes
● Observations:

○ for joint nodes: angular velocity, twist angle, torque,
position

○ for body nodes: velocity, inertia, force
● Rewards: task-defined (e.g. +speed, -energy cost)

Overview of RL setting

8

● PPO (proximal policy optimization) (Schulman et al. (2017))
● Maximize cumulative reward:
● Minimize KL-divergence of new/old policy penalty term and

value function loss

Overview of RL setting

9

NerveNet as policy network

● 3 component models
○ Input
○ Propagation (GNN with synchronous message-passing)
○ Output

● At each (RL environment) step: receive observation, perform T
propagation steps, decide action for each node

10

● , outgoing edges , incoming
● Node types
● Edge types
● Time:

○ in RL environment
○ in NerveNet propagation

Notation

11

Input model

● At each environment time step, for node u:

● Obtain fixed size vector at propagation step 0

12

Propagation model (I)

● Message computation (for each outgoing edge from u):

● Edges of same type share instance of message function

13

● Message aggregation (from all incoming edges of u):

Propagation model (II)

14

● States update on every node’s state vector:

● can be GRU, LSTM, MLP
● Nodes of same type share instance of update function

Propagation model (III)

15

Output model

● For each node u with an associated controller, predict mean value

of action applied to actuator (with T = 3..6):

● Stochastic policy:

16

17

Putting it all together

Value network

● Obtain state value for observation
● Three alternatives

○ NerveNet-MLP (GNN for policy, MLP for value)
○ NerveNet-2 (separate GNNs for policy and value)
○ NerveNet-1 (same GNN for policy and value)

18

Evaluation

1. Comparison on standard benchmarks of MuJoCo in Gym
2. Structure transfer learning
3. Multi-task learning
4. Robustness
5. Interpretation
6. Comparison of model variants

19

Comparison on continuous control MuJoCo

● Baselines
○ Standard MLP models (Schulman et al. (2017))
○ TreeNet:

■ remove physical structure, introduce super-node as root,
connect it to all nodes in the graph

■ similar propagation model: (1) aggregate messages from
all children; (2) give state vector of root to output model

20

21

Structure transfer learning tasks

● Size transfer:
○ train on smaller agent
○ apply on larger agent

● Disability transfer:
○ train on original agent
○ apply on ‘‘crippled’’ agent (some components disabled)

22

Models
● NerveNet:

○ reuse all weights of small-agent model (corresponding joints)
● MLP pre-trained (MLPP):

○ reuse weights from hidden to output layer
● MLP activation assigning (MLPAA):

○ reuse weights of small-agent model as partial weights of the
large-agent model, set the remaining to 0

● TreeNet:

○ same reassignment as for MLPAA 23

Environments (I)

● Centipede
○ Repetitive body structure (torso with 2 legs attached)
○ Leg = thigh + shin
○ Goal: run as fast as possible in the y-direction
○ Agents of different lengths (4..40) for size transfer

○ CrippleCentipede (2 back legs off) for disability transfer

24

25

26

Environments (II)

● Snake
○ Based on Swimmer model in Gym
○ Goal: move as fast as possible

27

28

29

Multi-task learning

● Walker task-set
○ five 2D walkers: {HalfHumanoid, Hopper, Horse,

Ostrich, Wolf}
● Very different dynamics across agents

○ First two: MuJoCo
○ Last three: natural animals

● Test ability to control multiple agents with one network

30

31

32

Robustness of learned policies

● Perturb agent parameters to simulate realistic setting
○ Mass of rigid bodies in MuJoCo
○ Scale of forces on the joints

33

Feature distribution

34

● PCA → represent state vectors of output layer
● Invariant representation across pairs of legs

Walk cycle

35

Comparison of model variants

36

● NerveNet-1 policy/value network sharing affects PPO

Main takeaways

● Exploit physical structure of RL agents
● GNN for agent policy
● Message passing via edges corresponding to physical links
● SOTA on MuJoCo benchmarks
● Strong transfer capabilities (including zero-shot)

37

Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk

www.cl.cam.ac.uk/~ccc53/

mailto:Catalina.Cangea@cst.cam.ac.uk
http://www.cl.cam.ac.uk/~ccc53/

