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RL agents with dependent controllers

● Common RL: concatenation of observations passed through an 
MLP to learn agent policy

● Longer training times and exposure to environment needed to 
discover latent relationships between observations, such as… 

→ agent structure! (i.e. joints with links/dependencies)
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RL agents with dependent controllers

● Actions taken by a joint/body should depend on:
○ Its own observations (previous work)
○ Actions of other joints (this paper)
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NerveNet

● Exploit the body structure of an agent and physical dependencies
● Agent policy → Graph Neural Network model
● Main idea

○ Propagate information between different parts of the body 
along the graph structure

○ Output action probabilities for each part
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● Transferable and generalized features obtained by placing prior on 
agent structure using GNN model

● RL benchmarks: results comparable to SOTA MLP-based models
● Structure transfer and multi-task learning: better results

Contributions
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● Use tree graphs from MuJoCo
● Assume two types of nodes:

○ body (e.g. Thigh, Shin in humanoid)
○ joint (e.g. Knee)

● Single node of type root - observes additional information

Graph construction
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● States: graph structure with incoming node features
● Actions: move joint nodes
● Observations:

○ for joint nodes: angular velocity, twist angle, torque, 
position

○ for body nodes: velocity, inertia, force
● Rewards: task-defined (e.g. +speed, -energy cost)

Overview of RL setting
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● PPO (proximal policy optimization) (Schulman et al. (2017))
● Maximize cumulative reward:
● Minimize KL-divergence of new/old policy penalty term and 

value function loss

Overview of RL setting
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NerveNet as policy network

● 3 component models
○ Input
○ Propagation (GNN with synchronous message-passing)
○ Output

● At each (RL environment) step: receive observation, perform T 
propagation steps, decide action for each node
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●                 , outgoing edges       , incoming
● Node types
● Edge types
● Time:

○      in RL environment
○      in NerveNet propagation

Notation
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Input model

● At each environment time step, for node u:

● Obtain fixed size vector at propagation step 0
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Propagation model (I)

● Message computation (for each outgoing edge from u):

● Edges of same type share instance of message function
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● Message aggregation (from all incoming edges of u):

Propagation model (II)
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● States update on every node’s state vector:

●      can be GRU, LSTM, MLP
● Nodes of same type share instance of update function

Propagation model (III)
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Output model

● For each node u with an associated controller, predict mean value 

of action applied to actuator (with T = 3..6):

● Stochastic policy:
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Putting it all together



Value network 

● Obtain state value   for observation 
● Three alternatives

○ NerveNet-MLP (GNN for policy, MLP for value)
○ NerveNet-2 (separate GNNs for policy and value)
○ NerveNet-1 (same GNN for policy and value)
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Evaluation

1. Comparison on standard benchmarks of MuJoCo in Gym
2. Structure transfer learning
3. Multi-task learning
4. Robustness
5. Interpretation
6. Comparison of model variants
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Comparison on continuous control MuJoCo

● Baselines
○ Standard MLP models (Schulman et al. (2017))
○ TreeNet:

■ remove physical structure, introduce super-node as root, 
connect it to all nodes in the graph

■ similar propagation model: (1) aggregate messages from 
all children; (2) give state vector of root to output model
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Structure transfer learning tasks

● Size transfer:
○ train on smaller agent
○ apply on larger agent

● Disability transfer:
○ train on original agent
○ apply on ‘‘crippled’’ agent (some components disabled)
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Models
● NerveNet:

○ reuse all weights of small-agent model (corresponding joints)
● MLP pre-trained (MLPP):

○ reuse weights from hidden to output layer
● MLP activation assigning (MLPAA):

○ reuse weights of small-agent model as partial weights of the 
large-agent model, set the remaining to 0

● TreeNet:

○ same reassignment as for MLPAA 23



Environments (I)

● Centipede
○ Repetitive body structure (torso with 2 legs attached)
○ Leg = thigh + shin
○ Goal: run as fast as possible in the y-direction
○ Agents of different lengths (4..40) for size transfer

○ CrippleCentipede (2 back legs off) for disability transfer
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Environments (II)

● Snake
○ Based on Swimmer model in Gym
○ Goal: move as fast as possible
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Multi-task learning

● Walker task-set
○ five 2D walkers: {HalfHumanoid, Hopper, Horse, 

Ostrich, Wolf}
● Very different dynamics across agents

○ First two: MuJoCo
○ Last three: natural animals

● Test ability to control multiple agents with one network
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Robustness of learned policies

● Perturb agent parameters to simulate realistic setting
○ Mass of rigid bodies in MuJoCo
○ Scale of forces on the joints
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Feature distribution

34

● PCA → represent state vectors of output layer
● Invariant representation across pairs of legs



Walk cycle
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Comparison of model variants
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● NerveNet-1 policy/value network sharing affects PPO



Main takeaways

● Exploit physical structure of RL agents
● GNN for agent policy
● Message passing via edges corresponding to physical links
● SOTA on MuJoCo benchmarks
● Strong transfer capabilities (including zero-shot)
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Thank you!

Questions?

Catalina.Cangea@cst.cam.ac.uk 

www.cl.cam.ac.uk/~ccc53/ 
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