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Chapter 1

Introduction

This project aimed to explore the use of Convolutional Neural Networks (CNNs) in au-

tomated music tagging. I have achieved this by successfully completing the core of my

project—implementing a fully functional CNN music tagging model from a recent re-

search paper [8]—and two additional extensions: implementing two more models from

the same paper that outperformed the first one and investigating the potential of these

architectures in a music recommendation scenario.

1.1 Project motivation

With an estimated 1,268.6m1 users, streaming services such as Spotify, Pandora, and

Apple Music have fundamentally changed the way we listen to music. Users can now

discover millions of songs and artists they would otherwise never have discovered. Features

like Discover Weekly, Artist Radio, AI-curated playlists and other recommendation-based

products are constantly evolving through the underlying machine learning techniques used

to develop them.

For many years, collaborative filtering has been the quintessential approach to music rec-

ommendation. Using this technique, new suggestions are primarily built upon historical

usage data, which makes the whole process content agnostic. This makes collaborative

filtering prone to the following2:

• It does not work when usage data is sparse: collaborative filtering does not

work for new users—they have no listening preferences or usage data.

• Recommendations are not personal: unlike listening preferences, which are

often unique and personal. Collaborative filtering suggests songs based on the usage

data of individuals with similar listening preferences, which is prone to false-positive

recommendations, particularly when users share little common ground, or some of

them have more eclectic musical taste.

1https://www.statista.com/outlook/209/100/music-streaming/worldwide#market-revenue
2http://benanne.github.io/2014/08/05/spotify-cnns.html

1

https://www.statista.com/outlook/209/100/music-streaming/worldwide#market-revenue
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• Popular songs are more likely to be recommended: sometimes a drawback,

as popular songs have already gained exposure and the goal is to automate a means

of music discovery, whilst maintaining the user’s listening preferences.

• The cold-start problem: new songs and up-and-coming artists suffer, as they are

not recommended until enough people have listened to them. The quality of recom-

mendations are dependent on how many users the service has and, more specifically,

how many of them have listened to each song.

An alternative approach avoids the scenarios described above by basing recommenda-

tions directly on the musical content. Songs can be grouped into clusters by humans

and hand-tailored playlists curated, but this is time-consuming and not always possible:

Spotify and Apple Music have a catalogue of around 20m songs, whilst Sony Music have

25m3.

Automated music tagging offers a possible solution: train a system to automatically label

songs with descriptive keywords, that can later be used to find similar songs with respect

to their audio content. Figure 1.1 gives a visualization of similar artists based on musical

tags associated with their songs.

My project focusses on implementing CNN-based systems to automatically label songs

with informative tags. As an extension, these labels have been used to build latent-space

representations of the songs and an analysis of this latent space has been carried out to

explore its use in content-based music recommendation. These labels have subsequently

been used to build a 2D representation of the songs (mainly achieved through the t-SNE

dimensionality reduction algorithm [20]). This space can be visualised in order to analyse

the potential of these tagging systems for content-based recommendation.

1.2 Background

1.2.1 Supervised learning

Supervised learning is a form of machine learning which aims to build a model that

predicts output variables given input variables, with the input or observations X =

(x1,x2, ...,xm) ∈ Rn and target values or output variables existing in Y = (y1,y2, ...,yk).

Supervised learning attempts to represent a hypothesis h : Rn → Y which models the

true relationship between input and output. This hypothesis can be learned by a neu-

ral network, for example, which translates to finding an optimal set of parameters θθθ (in

this case, weights and biases)4. When Y is finite, we are looking at a classification task.

Multi-label classification aims to find h : Rn → Y k; relating data to a vector of labels.

3https://ti.me/1drNspu
4http://www.cl.cam.ac.uk/teaching/1718/MLBayInfer/ml-bayes-18.pdf

https://ti.me/1drNspu
http://www.cl.cam.ac.uk/teaching/1718/MLBayInfer/ml-bayes-18.pdf


1.2. BACKGROUND 3

Figure 1.1: Reproduced from [19]. A t-SNE plot showing the latent space representations

of artists, which can be used to find similar artists for music recommendation.

1.2.2 Automatic music tagging

Automatic tagging represents a form of multi-label classification (since a song can have

more than one label to describe it) and is becoming increasingly relevant for producing

better and more interesting music recommendations. Considerable research has already

been carried out in this field, but many approaches consist of a feature extraction phase

that precedes the learning and prediction steps: namely, producing a numerical repre-

sentation that characterizes the audio content [18]. The problem with manual feature

extraction is that it requires more computational effort and domain-specific knowledge,

in order to devise suitable features that represent the raw data5.

Designing descriptive features for raw audio files is one of the main challenges in automatic

music tagging [7]. Extracting the features manually also gives rise to the question of which

features to extract for a given application area. Having the neural network learn these

features by itself, directly from audio data, requires no domain-specific knowledge and

allows the network’s final representation to encompass the most relevant features with

respect to the tagging process.

5https://arxiv.org/pdf/1606.00298.pdf

https://arxiv.org/pdf/1606.00298.pdf
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1.2.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) have many interesting applications, most notably

image classification [2, 13], speech recognition [16] and even epileptic seizure detection [22].

More recently, they have been applied to automatic music tagging [10] in an attempt to

build end-to-end systems which extract features from raw audio files.

CNNs have been shown to usefully exploit the inherent 2D structure of image data in ma-

chine learning tasks. Since an audio signal can be represented in 2D, CNNs have also been

used in music tagging, genre classification, instrument tagging and content-based music

recommendation [10] due to their ability to learn features relevant to the task. Labelling

of moods and eras requires increasingly complex, high-level feature extraction—CNNs can

learn by themselves which features are most relevant and more complex representations

can be produced as the network depth is increased.

1.3 Related work

Automated music tagging is an area of active research (§1.1). Choi et al. [7] found the

mel-spectrogram to be an effective 2D representation for music tagging using CNNs—I

have therefore used this input representation throughout my project. The architectures

I have implemented (§3.2.3) are inspired by a more detailed follow-up paper [8]—the

evaluation in Chapter 4 includes a comparison between the results obtained from the

different network architectures I implemented and against the results presented by the

authors.



Chapter 2

Preparation

This chapter outlines the software engineering practices I have adopted throughout the

project, providing an analysis of the required modules. It then proceeds to present the

essential theoretical aspects needed to implement the music tagging system.

2.1 Starting point

Prior to undertaking work on the project, I had:

• theoretical knowledge of the basic concepts from the Artificial Intelligence I course,

• a basic knowledge of Python.

During the project and especially during Michaelmas term, before starting to implement

any components of the automatic tagging system, I had to teach myself new concepts and

explore new frameworks; many of these are outside the CST Part II syllabus. I gained:

• theoretical knowledge of supervised learning, classification and evaluation methods

from the Machine Learning and Bayesian Inference course ahead of Lent term, when

the course is taught,

• theoretical knowledge of Convolutional Neural Networks, optimization algorithms

and t-SNE,

• theoretical knowledge of of audio processing techniques needed for input represen-

tation (in the form of spectrograms) from the Digital Signal Processing course,

• an understanding of the TensorFlow API,

• familiarity with the Python language and commonly used libraries (Numpy, Pickle),

• knowledge of the Librosa, an audio-processing library used to generate the spec-

trograms.

5
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2.2 Requirements analysis

Before beginning the implementation, building a full specification of the deliverables re-

quired for a successful project was of great importance. As mentioned in the Project

Proposal, the core aims of the project were to have:

• A working implementation of a Convolutional Neural Network.

• The ability of the network to perform better-than-chance prediction (accuracy above

50% for each tag and the lower bound of its confidence interval above 50%) of the

top-50 tags.

These correspond to the first item (labelled with high priority and difficulty) in Table 2.1.

Table 2.1: Requirements analysis for the project.

Requirement Priority Difficulty

CNN k2c1 (5 ConvLayers + 2 FC) high high

CNN k1c2 (4 ConvLayers + 2 FC) medium medium

FCNN k2c2 (5 ConvLayers) medium medium

t-SNE Visualisation Module medium low

Model Restoring Capabilities medium high

Training Suite high medium

Data Pipeline Module high medium

Data Pipeline optimisations medium high

Data Collection Suite high low

Data Analysis Suite high low

Deliverables of lower priority formed part of the two extension goals that were also

achieved within the project. The use of a number of libraries—especially TensorFlow—

required extensive research into the API and learning about how to implement neural

networks at a high level. Because of this, the first model to be implemented (k2c1 ) was

perceived as the most challenging; as this represented a core criterion, it was of the highest

priority. As my project required working with big data (the training set alone has a size

of over 200GB), optimising the data pipeline was a significant challenge.

2.3 Choice of tools

Throughout the project, it has been necessary to learn new technologies and tools (see

Table 2.2). It was not possible to store the entire 600GB dataset on my laptop, so I had

to request more disk space on the CL machines, where I trained and tested my models

(see Figure 2.1). This meant the I had to gain familiarity with UNIX, emacs and ssh.
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Tool Purpose

Atom Writing the core code base

git Version control

ssh Remotely connecting to the GPU machines for running code

Emacs Remotely writing code and data analysis

Unix The OS installed on the CL machines

Table 2.2: Tools used in the project

Figure 2.1: All training and testing was performed on the Computational Biology Group’s

GPUs.
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Table 2.3: Libraries used in the project

Library Version Purpose License

TensorFlow-gpu 1.4.0 Implementing and training the CNNs Apache 2.0

Matplotlib 2.1.1 Plotting evaluation results BSD license

Numpy 1.14.2 Data analysis BSD license

Scikit learn 0.19.1 Data analysis and t-SNE training BSD license

2.3.1 Programming languages, libraries and licenses

The project was implemented entirely in Python, using the TensorFlow Python API for

implementing the CNNs and training functionality. I chose Python because it is the only

language that fully supports the TensorFlow API, while also providing extensive online

documentation.

Table 2.3 enumerates the libraries I have used in the project. The TensorFlow-gpu [3] li-

brary was of key importance in implementing the CNN models. This library is frequently

used in machine learning projects, due to its extensive availability of neural network

modules and ability to train and test models on GPUs, without additional manual con-

figuration.

Under both the BSD1 and Apache 2.02 licenses, I am free to use the libraries for any

purpose: to distribute them, to modify them, and to distribute modified versions of the

libraries under the terms specified by the licenses. The tikz diagrams included in my

dissertation were inspired by the work of Petar Veličković3 and as such are viable to the

terms of the MIT4 license. My dissertation repository will also be released under the MIT

license to enable the free distribution and modification of my code.

2.3.2 Development practices

I used an Agile development methodology, with fixed constraints in terms of what was to

be implemented, but with flexibility in how those components were to be implemented.

This consisted of setting two week timeframes for sprints where I would implement a

specific component or carry out research in a particular area, with a review period at

the end of those sprints to track progress. This turned out to be particularly effective,

especially when improving the data pipelining implementation.

1https://opensource.org/licenses/BSD-3-Clause
2https://www.apache.org/licenses/LICENSE-2.0
3https://github.com/PetarV-/TikZ
4https://opensource.org/licenses/MIT

https://opensource.org/licenses/BSD-3-Clause
https://www.apache.org/licenses/LICENSE-2.0
https://github.com/PetarV-/TikZ
https://opensource.org/licenses/MIT
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2.3.3 Development environment

The majority of the development process was carried out on my personal laptop, using the

Atom text editor with git integration for version control. The development cycle consisted

of implementing a change locally, committing and pushing to git, and then pulling new

changes to the server. While remotely connected to the GPU machines through ssh, I

edited the code using Emacs.

2.3.4 Backup

The project implementation and write-up were both stored locally, backed up periodically

onto an external hard disk, and also synced with iCloud Drive. They were also given

separate git repositories.

2.4 Neural networks

My project implements a convolutional neural network, which first requires understanding

of a neural network. In this section, I describe the components of a neural network:

neurons and activations.

2.4.1 A single neuron

Recall from §1.2.1 that our model estimates a hypothesis function h(θ; x). The simplest

case of hypothesis function, also known as linear discriminant or perceptron, applies an

activation function σ to a function that is linear in its parameters w = (w0, w1, ..., wD−1):

h(w; x) = σ

(
w0 +

D−1∑
j=1

wjφj(x)

)
(2.1)

2.4.2 Deep feedforward networks

Feedforward networks (an example is shown in Figure 2.2) are built up of layers of individ-

ual neurons: each of them takes the dot product between their inputs and weights, adds a

bias vector and applies an activation function to provide non-linearity to the model. The

output of one layer is fed to the input of the next layer—hence the term “feedforward”,

and the number of layers represent the network depth.

A neural network represents the aforementioned hypothesis function f = h(θ,x), where θ

is the set of optimal parameters that are learned using gradient descent—an optimisation

algorithm that I describe in the Implementation chapter. This method updates the model

parameters according to a loss function, which describes the error between the model
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Figure 2.2: A feedforward network. (Left:) The computation performed by a single neuron

within a layer of the network. (Right:) A feedforward neural network with input, hidden

and output layers.

output and the target output. To obtain the required loss function to train our model,

maximum likelihood estimation can be used (§2.5).

2.4.3 Activation functions

Activation functions add non-linearity to our model, allowing it to learn more complex

representations, and can also be used to limit the range of the output. This is particularly

useful in classification, where we aim to output probabilities of our input belonging to a

specific class: my system outputs, for each tag, the probability of that tag being associated

with the input song. The output of a layer can be written as:

z = WTx + b, (2.2)

where x is the input to the neuron, W represents the layer’s weights (each row corresponds

to a single neuron) and b is the vector of bias terms for each of the neurons.

To introduce non-linearity, an activation function can be applied to z. The activation

functions used in my project are the sigmoid (§2.4.3) and ELU (§3.2.2) activation func-

tions.

Sigmoid

The sigmoid activation function is used for probabilistic classification which will be de-

scribed in Section 2.6.3. It takes the form:

σ(z) =
1

1 + exp(−z)
(2.3)

and its derivative can be written as:

σ′(z) = σ(z)(1− σ(z)) (2.4)
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Figure 2.3: The sigmoid activation function (in blue) and its derivative (in red).

ReLU

The ReLU activation function in Equation 2.5 is commonly used due to the stability

in its gradient. ReLU diminishes the vanishing gradient problem that arises with other

activations, since its gradient is 1 for non-negative values. The vanishing gradient problem

arises due to the way in which gradients are computed in back-propagation: the chain-rule

involves multiplying intermediate gradients, and for small values these gradients vanish 5.

ReLU, however, introduces a bias: it has a mean activation greater than zero. I used the

ELU activation to overcome this issue (§3.2.2), which is discussed in the Implementation

chapter.

ReLU(z) = max(0, z) (2.5)

−10 −5 0 5 10
0

1

2

3

4

5

z

σ
(z

)

Figure 2.4: The ReLU activation function (in blue) and its derivative (in red).

5http://neuralnetworksanddeeplearning.com/chap5.html#discussion_why

http://neuralnetworksanddeeplearning.com/chap5.html#discussion_why
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2.5 Maximum Likelihood Estimation (MLE)

As mentioned in §2.4.2, we want our model to represent a hypothesis function that esti-

mates the relationship between our input and output data. Maximum Likelihood Esti-

mation (MLE) [11] can be used to derive a suitable loss function, which we employ when

adjusting our model parameters to reach an optimal representation of the hypothesis

function. The MLE principle enables us to find the loss functions required to train our

model. Take a set

X = {x(1),x(2), ...,x(m)}
of m independent, identically distributed (IID) examples, taken from an unknown distri-

bution pdata. We aim to train a model pmodel(x; θ) of this distribution by updating the

parameters in θ. Conceptually, pmodel(x; θ) represents the parametric family of probability

distributions over the same space as pdata(x), indexed by the choice of parameters θ. The

model aims to map our input vectors to a real number:

pmodel(x; θ) : x→ R

providing an estimate of the true probability pdata(x). When building a model using

neural networks, our parameters are the respective weights and biases of the network that

are updated during training.

MLE principle enables us to find the optimal parameters6 [12]:

θML = arg max
θ

[
pmodel(X; θ)

]
= arg max

θ

[
m∏
i=1

pmodel(x
(i); θ)

]
(2.6)

where the second line follows from the IID assumption about the training examples in X.

Unfortunately, in training a model based on Equation 2.6, the computation is prone to

underflow due to the constituents of the product being small. An equivalent optimisation

can be achieved by taking the log of the expression in Equation 2.6, which allows us to

transform the product into a sum:

θML = arg max
θ

[
m∑
i=1

log pmodel(x
(i); θ)

]
(2.7)

Dividing Equation 2.7 by the number of samples m does not affect the quantity we have to

maximise for finding an optimal set of parameters θ, so we obtain the following equivalent

expression:

θML = arg max
θ

[
Ex∼ptrain

(
log pmodel(x; θ)

)]
(2.8)

6Optimal in the sense that they are chosen from the parametric family of probability distributions

(pmodel(x; θ)) indexed by the choice of parameters θ, such that the probability of generating the input x

with these parameters is maximal.
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which corresponds to maximising the expectation of the log-likelihood given that x follows

the distribution ptrain—the empirical distribution defined by the training set with which

the model is trained.

The maximum likelihood estimator above can be thought of as reducing the dissimilarity

between two probability distributions. Since the exact distribution is unknown (we only

have access to a limited amount of data sampled from it), we take our empirical distri-

bution represented by the training set (ptrain) and attempt to reduce the dissimilarity

between it and pmodel. A useful measure for the dissimilarity between two distributions

is the Kullback Leibler divergence, which gives a measure of the dissimilarity between the

two distributions.

Given some unknown distribution p(x) that is modelled by an estimator q(x), the Kullback-

Leibler divergence (KL) or relative entropy between the two distributions is defined as:

DKL(p||q) =
(
−
∫
p(x) log q(x)dx

)
−
(
−
∫
p(x) log p(x)dx

)
(2.9)

If KL(p||q) = 0, then the two distributions are equal. The two terms are the entropy

when approximating the distribution p with q and the actual entropy of the unknown

distribution p, respectively.

The application of KL to the maximum likelihood estimator problem is useful because it

tells us that the estimator is trying to minimize the distance between the model distribu-

tion and the empirical distribution. Applying Equation 2.9 to the MLE and taking the

data to be discrete, we arrive at:

DKL(ptrain||pmodel) = −
m∑
i=1

ptrain(x) log pmodel(x)−
(

m∑
i=1

ptrain(x) log ptrain(x)

)

=
m∑
i=1

ptrain(x)
(

log ptrain(x)− log pmodel(x)
)

= Ex∼ptrain

(
log ptrain(x)− log pmodel(x)

)
(2.10)

Since the empirical distribution ptrain is defined by the training set and is not a function

of the model itself, training the model requires us to minimize the following quantity by

updating our model parameters θ, which is an equivalent expression to Equation 2.8:

θML = − arg min
θ

[
Ex∼ptrain

(
log pmodel(x; θ)

)]
= arg max

θ

[
Ex∼ptrain

(
log pmodel(x; θ)

)] (2.11)

Training a model by minimizing KL divergence or equivalently maximising the log-

likelihood both yield the same optimal parameters θ, but our loss functions for each

scenario differ. A loss function (as mentioned in Section 2.4.2) is a term frequently coined

to refer to the function used in the optimization of our model, which we aim to minimize

during training—we “minimize the cost function”.
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When maximising the log-likelihood, we therefore minimise the negative log likelihood. In

doing so, it is helpful to relate to minimizing the cross-entropy as this has a minimum at

zero, as described above in Equation 2.9, whereas the negative log likelihood can become

negative for real-valued x. I will discuss loss functions in more detail in Chapter 3.

2.6 Multi-label classification

The probabilistic approach to classification is based on probabilistic generative models

and allows the derivation of a multi-label classification model. Taking the probability

of a tag being associated with a song (§2.6.1) allows us to derive a model for two-class

classification (§2.6.2), which can then be applied to the multi-label classification problem

at hand (§2.6.3).

2.6.1 Bernoulli distribution

We can use the Bernoulli distribution [6] to model the probability of a label being assigned

to an example. This distribution is over a single binary random variable X, where any

instance of X takes one of two values: x ∈ {0, 1}. The Bernoulli distribution is defined

by a single parameter φ, for which the following properties hold:

P(X = 1) = φ

P(X = 0) = 1− φ
P(X = x) = φx(1− φ)1−x

(2.12)

2.6.2 Two-class classification

Given an input vector x, we wish to classify x into one of two (mutually-exclusive) classes

C1 and C2. Taking the probabilistic approach [6], this is equivalent to modelling the

posterior probability P(Ci|x). This is a posterior probability since it is generated when

training the model, using our prior probabilities P(x|Ci) and P(Ci). The posterior prob-

ability of C1 given x then becomes:

P(C1|x) =
P(C1,x)

P(x)

=
P(x|C1)P(C1)

P(x)

=
P(x|C1)P(C1)

P(x|C1)P(C1) + P(x|C2)P(C2)

(2.13)

Neural networks can be trained to model this probability distribution with the help of the

sigmoid activation function (§2.4.3). The sigmoid activation σ : (−∞,+∞) → [0, 1]

has the property of mapping the real numbers to a finite interval. By applying it to the
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output unit of a neural network, Equation 2.13 (the posterior distribution of the model)

becomes the new output:

P(C1|x) =
1

1 + exp
[

ln P(x|C2)P(C2)
P(x|C1)P(C1)

]
=

1

1 + exp(−z)

= σ(z)

(2.14)

where z is defined to be:

z = ln
P(x|C1)P(x)

P(x|C2)P(x)
(2.15)

Through gradient-based training methods, the network learns how to generate the poste-

rior distribution. The learning algorithm specifies the loss function which is minimized

during training to update the model parameters. In the case of two-class classification,

we use the binary cross-entropy loss function (§2.6.4).

2.6.3 Multi-label classification

Multi-label classification takes some input vector x ∈ Rn and predicts a K-dimensional

vector l ∈ ZK of the label(s) associated with it. When training our network, we fix the

set of possible labels to some size K. In the context of music tagging, the input vector is

the song and the predicted vector contains labels associated with the song.

Multi-label classification is a natural extension of binary classification, which is, in turn,

an instance of two-class classification. Given K labels we use K output units, each acting

as a binary classifier, that predict the probability of an example belonging to class Ck.

Each output unit uses the sigmoid activation function to turn the output into a valid

Bernoulli probability distribution.

2.6.4 Binary cross entropy

We can generalise the MLE (§2.5) to predict output labels y for input vectors x. This

corresponds to maximising P(Y|X; θ). From Equation 2.6 in Section 2.5, we seek optimal

parameters satisfying:

θML = arg max
θ

[
m∑
i=1

logP(y(i)|x(i); θ)

]
(2.16)

Over all input-output pairs, this is equivalent to:

θML = arg max
θ

[
logP(Y|X; θ)

]
(2.17)
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and so the loss function for maximum likelihood learning of a Bernoulli random variable

is given by:

J(θ) = − logP(Y|X; θ) (2.18)

which corresponds to maximising logP(Y|X; θ). To implement this in the context of a

neural network, we define our output unit to use the sigmoid activation function (§2.6.2)

giving:

J(θ) = − log

(
1

1 + exp(−z)

)
(2.19)

2.6.5 Data representations for music tagging

Let us define the set of labels L = {l1, ..., lK} where a given li is a descriptive label of a

song (for example, “rock” or “happy”). Automated music tagging is a form of multi-label

classification: tags are not mutually exclusive and multiple tags may be used to describe

a song. Genre classification—in which the set L is exclusively genres—is commonly a

multi-class problem and seeks to assign a single genre to a song, giving 1 of K possible

solutions. However, in music tagging, the set L can be populated by any combination

of appropriate keywords. The key difference between genre classification and multi-label

classification is that there may be 2K different outputs in music tagging, as opposed to

only K possible class assignments in genre classification. Consequently, music tagging

tasks require much larger datasets, such that a suitable proportion of tag combinations

can be represented and learned.

2.7 Convolutional neural networks

2.7.1 Convolution

Convolution is a mathematical operation taking as input two functions f : R → C and

g : R → C and producing a third function denoted f ∗ g that is a combination of f and

g. We define the convolution [11] of f and g as:

(f ∗ g)(t) =

∫ ∞
−∞

f(t− τ)g(τ)dτ (2.20)

In the context of convolutional networks, we define the first input f as our convolutional

layer input and the second, g, as the kernel. The resulting output is often referred to

as a feature map. Below we define convolution between a 2D image I and a 2D kernel

K:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.21)
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From the commutativity of convolution, we can equivalently write Equation 2.21 as:

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n) (2.22)

In most machine learning libraries, convolution is implemented as defined in Equation

2.22, since there is reduced variation in values of m and n for images, whereas kernels

fairly frequently vary in dimensionality. The reason the commutative property applies

is due to the flipping of the kernel relative to the input (we first flip the kernel in both

horizontal and vertical directions; this is because during convolution, as m increases, the

image index increases, but the kernel one decreases).

Figure 2.5 depicts how convolution works intuitively: the operation is the integral over

point-wise multiplications of the two functions, where one of the functions is shifted with

respect the the other.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 2.5: An example showing 2D convolution without kernel flipping. The output is

restricted to positions where the kernel lies entirely within the original image.

A commonly used variant of convolution is cross-correlation, which is convolution with-

out flipping the kernel relative to the image:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.23)

For the purposes of convolutional neural networks, it is common practice to treat cross

correlation and convolution synonymously, by implementing the operation in Equation

2.23, visually represented in Figure 2.5, except in certain cases that will be explicitly

stated otherwise.

2.7.2 Convolutional layers

Convolutional networks typically consist of convolutional layers, max-pooling layers and

batch-normalisation units. Max-pooling and batch normalisation will be described in

Chapter 3.

Convolutional networks are built upon three key ideas: sparse interactions, parameter

sharing and equivariant representations [11]. In a convolutional neural network, the

interactions between output and input units differ from traditional neural networks: rather



18 CHAPTER 2. PREPARATION

than being densely connected, the network exhibits sparse interactions between its layers.

The convolutional layers consist of a set of learnable parameters that define a set of filters

in that layer.

I will now define several terms that represent essential concepts for convolutional layers:

• Kernel size: corresponds to the dimensions of a given filter and dictates the di-

mensionality of a neuron’s receptive field in the layer. For example, a convolutional

layer may have filters with dimensions [5× 5].

• Filter size: denotes the number of filters in the convolutional layer. For example,

a convolutional layer might have 64 [3× 3] filters, each of which produce a feature

map in the output volume.

• Feature map: shows the response a filter has over a single channel of the input

volume.

• Input volume: the input to the convolutional layer, of dimensions Win×Hin×Cin.

• Output volume: of dimensions Wout × Hout × Cout, where Cout is determined by

the number of filters in the layer; for K filters, the layer will output K activation

maps, each of dimensions Wout ×Hout.

Receptive field

Consider the convolutional layer with three [2×2] filters illustrated in Figure 2.6. Let the

yellow circle represent the output of a neuron in the convolutional layer. This neuron has

a receptive field of 4—it “sees” four input values in each channel of the input volume.

When each of the filters are convolved with the input volume, the dot product between

each filter parameter and the input values is computed and the results are summed to give

the output value of the neuron. In this case, the output volume is made up of 3 channels,

each representing a feature map containing the response of a filter to the input. The

green highlighted filter in Figure 2.6 is responsible for producing the green highlighted

activation map in the output volume.

Parameter sharing

Parameter sharing refers to the weight parameters in Figure 2.7 being shared by each

output neuron. Each filter produces a separate channel in the output volume. The green

highlighted filter is responsible for producing the green highlighted channel in the output

volume—this is the activation map of the filter. The red highlighted circles represent

inputs that use the same filter parameter (highlighted in red), as the filter is moved across

the input. Figure 2.8 further illustrates the sharing of parameters between neurons, where

the red circles denote inputs that are multiplied by the same weights (corresponding to

the top left cell of the kernel) when the filter is moved across the input.
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Figure 2.6: A simple example of a convolutional layer with 3 filters.

Figure 2.7: A simple example of a convolutional layer with 3 filters.
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Figure 2.8: An example of parameter sharing.
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Figure 2.9: Input x3 only interacts with three outputs when the kernel size is 3.
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Figure 2.10: Output z3 only interacts with three inputs when the kernel size is 3.
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When the input volume is given to the convolutional layer, each filter is convolved over

the input to produce a feature map. These feature maps are then stacked to produce the

output volume, resulting in the number of filters F in a convolutional layer determining

the number of channels in the output volume.

Fully-connected neural network layers use matrix multiplication to multiply a set of

parameters—namely weights and biases—with the input to that layer. Each parame-

ter has a single purpose: control the interaction between a single output unit and a single

input unit, which results in a high number of parameters.

Sparse interactions

Convolutional layers tend to have sparse interactions (visualised in Figure 2.9 & Figure

2.10), meaning not every output unit interacts with every input unit. This is beneficial,

because the number of required parameters is vastly reduced, particularly if the kernel

size is much smaller than the input dimensions (for example, a [3 × 3] kernel convolved

over a 28× 28 pixel image).
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Chapter 3

Implementation

In this chapter, I will detail the implementation of the music tagging system, (shown as a

UML diagram in Figure 3.1) carried out towards the successful completion of my project

core and extensions. This process consists of four stages:

1. Setting up the data pipeline: this stage posed the most problems, as I had to design

an optimised multi-threaded pipeline that would speed up the loading of the 200GB

training set in batches from disk, to reduce the infeasible initial epoch1 time (3300s).

2. Implementing the three CNN architectures from the paper [8]: k2c1, k2c2, k1c2.

3. Choosing suitable loss functions for the music tagging task.

4. Training and evaluating the models: the size of the dataset affected this stage as well

in terms of training time, so I had to ensure that model checkpointing and restoration

could be easily performed. Evaluation results are presented in Chapter 4.

3.1 Setting up the data pipeline

3.1.1 The Million Song Dataset

The Million Song Dataset [5] was used for the project, which is described as being a

“freely-available collection of audio features and metadata for a million contemporary

popular music tracks”2. The tags the CNNs predict are the last.fm3 tags, and are the

top-50 such tags from the dataset. The CNNs were implemented and trained using the

tags in Table 3.1.

1An epoch is a training iteration over the entire dataset.
2https://labrosa.ee.columbia.edu/millionsong/
3https://labrosa.ee.columbia.edu/millionsong/lastfm

23

https://labrosa.ee.columbia.edu/millionsong/
https://labrosa.ee.columbia.edu/millionsong/lastfm
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Figure 3.1: A UML class diagram showing the architecture of the music tagging system.
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Table 3.1: The 50 last.fm tags the CNNs have been trained on.

Genres Moods Instruments Eras

rock (1) beautiful (11) female vocalists (6) 00s (8)

pop (2) chillout (13) male vocalists (14) 80s (20)

alternative (3) mellow (18) instrumental (24) 90s (22)

indie (4) chill (23) female vocalist (32) 70s (35)

electronic (5) oldies (26) guitar (33) 60s (45)

dance (7) ambient (29)

alternative rock (9) party (36)

jazz (10) easy listening (38)

metal (12) sexy (39)

classic rock (15) catchy (40)

soul (16) sad (48)

indie rock (17) happy (50)

electronica (19)

folk (21)

punk (25)

blues (27)

hard rock (28)

acoustic (30)

experimental (31)

hip-hop (34)

country (37)

funk (41)

electro (42)

heavy metal (43)

progressive rock (44)

R&B (46)

indie pop (47)

house (49)

3.1.2 Data preprocessing

Obtaining and cleaning up the dataset

One of the first challenges encountered during the preparation phase was acquiring the

dataset and ensuring that it only contained valid samples. The Million Song Dataset

doesn’t actually consist of raw audio files—instead, it maps song IDs to a set of attributes.

The dataset itself consists of 201, 680 songs for training, 12, 605 songs for validation and

28, 540 song entries for testing. At the time of writing the project proposal, the website
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Figure 3.2: A mel-spectrogram of a song sample from the dataset.

7Digital4 offered an API for accessing previews of the songs in the dataset using the IDs

provided by the MSD—however, when I attempted to download the dataset during the

preparation phase, the website no longer offered API keys to new users. I am therefore

very grateful to Dr Keunwoo Choi, the author of the paper [8], for kindly syncing the

600GB raw audio dataset to the Computer Laboratory’s servers. Dr Keunwoo Choi kindly

provides a Github repository with files containing the train/validation/test song IDs and

another file that stores the tags associated with each song.

Several song files were corrupted (zeroed files or files that are not encoded correctly), which

meant the corresponding song IDs from the train/validation/test files had to be removed,

along with the corresponding arrays of tags. After cleaning the dataset, the training,

validation and test splits were left with 39, 5 and 6 fewer songs, respectively. Given the

size of the dataset, these songs constituted a relatively small number of omissions, which

I did not expect to have drastic consequences on the final results.

Mel-frequency spectrograms

A consideration that had to be made during the project was the whether to use the raw

audio wave as input or to seek an alternative representation of the songs. Convolutional

neural networks are primarily built for processing data with a grid-like topology and work

particularly well with 2D images [11], which makes spectrograms—a 2D frequency-time

representation of the audio—a good choice. Spectrograms were also used by Choi et

al. [8], so a fair comparison between their results and mine could only have been achieved

by using this input representation.

In particular, the log-amplitude mel-frequency spectrogram was chosen, since research

in music classification and genre labelling [7] has shown that using log-amplitude mel-

frequency spectrograms yields better results than those obtained from other represen-

tations (for example, short time Fourier transform, mel-frequency cepstral coefficients

(MFCCs), linear-amplitude mel-spectrograms).

Developed as a subjective pitch scale, the mel-scale [17] was introduced to investigate how

4https://www.7digital.com/

https://www.7digital.com/
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Algorithm 1 Spectrogram generation

1: procedure GenerateMelFrequencySpectrogram(filepath)

2: for IDs in batch do

3: audio, sampleRate← load(filepath)

4: downsampleRate← 12000

5: duration← 29.12 . Take a 29.12s snippet from the audio file

6: audioDS ← resample(audio, sampleRate, downsampleRate)

7: sampleLength← audioDS.getLength()

8: length← duration ∗ downSampleRate
9: if sampleLength < length then . add zero padding

10: audioDS ← audioDS.addPadding(length− sampleLength)

11: else . take the middle section

12: upper ← (sampleLength− length)/2

13: lower ← (sampleLength+ length)/2

14: audioDS ← audioDS[lower : upper]

15: end if

16: params← {nfft : 512 nmels : 96 hopLength : 256 sr : downsampleRate}
17: spectrogram←melspectrogram(audioDS, params)

18: powerSpectrogram← square(spectrogram)

19: logSpectrogram← logamplitude(powerSpectrogram, refPower = 1.0)

20: return logSpectrogram

21: end for

22: end procedure

humans judge changes in pitch. When presenting an audio representation that is as close

as possible to the auditory experience of humans, we are allowing CNNs to learn some of

the features that humans recognise when listening to music. The scale [21] is defined as

follows:

fmel = 2595log10

(
1 +

f

700

)
(3.1)

where f is the initial frequency and fmel is the resulting frequency on the mel scale.

I used the librosa library to extract the spectrograms from the raw audio files—the

dataset was processed in batches to reduce computational time. Algorithm 1 illustrates

the data pre-processing steps taken. For compatibility with the architectures implemented

in [8], the audio was re-sampled and a specific-length snippet taken to ensure the correct

dimensionality for input. The CNNs have a 96 × 1366 input (mel-frequency × time-

frame), meaning the sample rate and duration were chosen to satisfy: 1366 = (duration×
sample rate)/hop length. The hop-length used was 256, with the duration taken to be

29.12s (as in the paper), leaving the required sample rate as 12kHz. Zero padding was

also used to ensure the spectrogram matched the input dimensions.
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3.1.3 Data pipeline

Given the size of the dataset, I spent a large proportion of the implementation phase

optimising the data storage and retrieval processes. The mel-spectrograms were stored as

numpy arrays—each of size 1.05MB. For the training set alone, this required approximately

211GB of storage, the entire dataset reaching 255GB in size. The GPU machine that was

used throughout the project shares 62GB of RAM across 3 GPU kernels. This made

loading the entire dataset into memory (the usual approach for many supervised learning

tasks) infeasible, which required me to seek an alternative solution (see Figure 3.3).

Pre-fetching the data

Initially, a number of methods were implemented for loading the dataset from disk. This

required maintaining pointers to an array of IDs for training and evaluation purposes.

On initialisation, a block of data was loaded from disk into RAM: this involved taking

a block size number of IDs, loading each spectrogram and storing it in main memory.

When the next batch was required, a method get chunk() would simply take batch size

number of elements from the current block.

(a) A non-pipelined approach: both the CPU and GPU are idle for most of the time.

(b) A pipelined approach: idle time is considerably reduced. Whether the GPU still remains

idle for a short time depends on the training time: for more complex models, training took

longer than the time to fetch the next epoch’s worth of data.

Figure 3.3: A diagram showing the purpose of implementing an efficient data pipeline.

Training time is significantly reduced by optimising the pre-fetch of input data.

I quickly realised that this approach had a considerable drawback: the fetching of the next

block is a synchronous, blocking operation. Spectrogram arrays are loaded sequentially,
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Algorithm 2 Setting up the data pipeline for training (analogous for testing)

1: example training = fetch batch(train set filenames, TRAINING BATCH SIZE)

2: params← {batch size, queue capacity,min dequeue, num threads}
3: example batch training ← tf.train.shuffle batch([example training], params)

which is highly inefficient and fails to exploit exploit the potential parallelism. Training

and data fetching can occur simultaneously, by training a model on the GPU and fetching

the required data using the CPU. I therefore decided to implement a pipelined multi-

threaded approach using TensorFlow’s queue data structures, which vastly reduced idle

time and maximised the GPU throughput. This resulted in a significant acceleration

(4.5× faster5) per epoch—a single iteration over the entire training set.

Switching to a more flexible and optimised version of the data pipeline brought addi-

tional delays to the overall project timeline. I had to familiarise myself with Tensor-

Flow QueueRunners, RandomShuffleQueues and InputProducers, in order to incorpo-

rate them in the implementation and use the API to build a flexible, optimised input

pipeline. The pipeline consists of multiple producer threads, and a single consumer:

multiple threads enqueueing examples onto the examples buffer—otherwise known as

“producing”—and the training thread dequeues mini-batches using the dequeue many()

operation, otherwise known as “consuming”.

The approach I adopted initialises the data pipeline as shown in Algorithm 2 and uses Ten-

sorFlow’s shuffle batch() method, which utilises a RandomShuffleQueue, and ensures

the dataset is sufficiently shuffled for training.

The fetch batch() function call is added as an operation to the TensorFlow graph, and

example training is the output tensor of the operation. When example training is

passed to the method tf.train.shuffle batch()6, TensorFlow adds a Queue (managed

by the QueueRunner) to the graph that holds data from example training.

Rather than requiring the developer to handle multi-threading, TensorFlow provides

QueueRunners and a thread Coordinator, the former starts the threads for all the queue

runners in the current graph, and the latter deals with clean-up of threads.

Figure 3.4 shows a schematic of the input pipeline containing the following components:

• Filename queue: holds the filename(s) of the dataset: for the training set, this

queue holds the names of the files, each being a shard of the training set. The

string input producer owns an enqueue many() operation in the graph that builds

and randomly shuffles a list of filenames, which is subsequently added to the filename

queue.

• Example queue: added to the graph by the shuffle batch() method. The

example queue holds the batches of examples, which are dequeued and decoded

when the training operation is executed.

5Comparison based on training the k2c1 model using the sequential and multi-threaded approaches.
6https://www.tensorflow.org/api_docs/python/tf/train/shuffle_batch

https://www.tensorflow.org/api_docs/python/tf/train/shuffle_batch
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Figure 3.4: The input pipeline

When the training operation is called, batch size examples are randomly sampled from

the examples queue, which holds at least min to dequeue items. The batch is decoded and

then fed forward through the CNN model. The pipeline adds two additional operations to

the graph: fetch batch() (shown in Listing 3.1) and decode example batch() (shown

in Listing 3.2).

Listing 3.1: Code for fetching a batch of examples.

def fetch_batch(filename ,batch_size ,epochs):

# build queue of filenames

queue = tf.train.string_input_producer(filename ,num_epochs=epochs ,

shuffle=True)

# setup record reader

reader = tf.TFRecordReader ()

batch = []

# fetch the next batch

for i in range(batch_size):

_, example_serialised = reader.read(queue)

batch.append(example_serialised)

return [batch]

Listing 3.2: Code for decoding an example batch.

def decode_example_batch(batch_to_decode ,batch_size):

# use TF's parse_example to decode a batch of examples

features = tf.parse_example(batch_to_decode , features ={

'song_id ': tf.FixedLenFeature ([], tf.int64),

'data': tf.FixedLenFeature ([131136] , tf.float32),

'target ': tf.FixedLenFeature ([50] , tf.int64)

})

song_id = tf.cast(features['song_id '], tf.int32)

data = tf.reshape(features['data'],[batch_size ,96 ,1366 ,1])
target = tf.reshape(features['target '],[batch_size ,50])

return data , target , song_id
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TensorFlow records

Another important consideration regarding the overall feasibility of the training and eval-

uation process, both restricted by the project timeline, was how the spectrograms were

to be stored. I aimed to improve the data pipeline efficiency by finding a way to minimise

disk access latency during fetching of new batches, at the same time creating a much

simpler interface for this operation.

The solution was to use TensorFlow Records: a binary file format made up of a sequence

of strings. The records do not allow for random access, only sequential access, which

required the sharding of the dataset to allow for shuffling. The fetch batch() method

in Listing 3.1 shows the TFRecordReader() method used to read the record file, and

the decode example batch() method in Listing 3.2 shows the code used to decode an

example.

Shuffling the dataset

During training, the dataset requires random shuffling to prevent the network from learn-

ing features from the order of the data, which would lead to it overfitting on the training

set and not being able to generalise to unseen examples. Shuffling of the input data has

also been shown to increase convergence speed [4] and the random sampling improves

gradient estimates.

To maximise shuffling, the dataset was sharded into 13 files, each containing 16,384 exam-

ples. The string input producer in Listing 3.1 randomly shuffles the shard file names

at the beginning of each epoch and adds the filenames to the filename queue as in (Stage

1 shown in Figure 3.4). These filenames are then dequeued sequentially by the consumer

threads (Stage 2 shown in Figure 3.4), which then add batches of example to the example

queue. The training thread then dequeues training batch size examples selected at

random from the example queue, which results in a sufficiently random shuffling of the

entire dataset.

3.2 Implementing the CNN models

3.2.1 TensorFlow

TensorFlow [3] is a framework that allows us to define machine learning algorithms using

already implemented smaller units (e.g. network layers, activation functions). To describe

a computation in TensorFlow, we must first build a graph: a set of nodes linked by directed

edges. Here, nodes represent an instantiation of some operation—for example, applying

an activation function, performing a matrix multiplication or convolving a kernel with the

input. Nodes can take zero or more inputs and produce zero or more outputs and tensors

are values that flow along edges in the graph—tensors are arbitrary dimensionality arrays

defined during graph construction.
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MatMul

W x

Add

ELU

b

Figure 3.5: An example of a TensorFlow graph.

Setting up the graph

TensorFlow requires the initialisation of the tensors and variables being used in the com-

putation. Variables are stored in the graph whilst the session remains active, holding the

weights and biases for the created network.

The diagram in Figure 3.5 and code fragment in Listing 3.3 give an example of setting

up a simple graph: the nodes represent variables and placeholders and rectangles denote

operations that take tensors as arguments. When training the network, TensorFlow’s

session interface introduces a run operation which takes a set of outputs that need to

be computed, and computes the order in which to evaluate each of them. Inputs can also

be fed into the run operation to replace values in the graph: x is a placeholder that can

be updated with the next input batch, for example.

Listing 3.3: An example of a TensorFlow code fragment corresponding to the TensorFlow

graph in Figure 3.5.

# 100-d vector , init to zeroes

b = tf.Variable(tf.zeros ([100]))

# 784 x100 matrix of rand vals

W = tf.Variable(tf.random_uniform ([784 ,100] , -1 ,1))

# Placeholder for input

x = tf.placeholder(name=``x'')
# ELU(Wx+b)

elu = tf.nn.elu(tf.matmul(W,x)+b)

# get output of elu

sess.run([elu],feed_dict ={x:input})
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3.2.2 Convolutional unit

The CNNs implemented all follow a typical network with the layout (convolutional, ac-

tivation, pooling layers), to which regularisation has been added in the form of batch

normalisation, which I explain later in this subsection. Consequently, a convolutional

unit consists of four stages:

1. Convolution stage: this is where the convolution is applied. The layer’s filters

are convolved with the input to produce an intermediary output volume which is

fed into the second stage.

2. Batch normalisation: outputs from the convolution are fed into batch normali-

sation units.

3. Detector stage: non-linearities are applied at this point. The ELU activation

function (discussed later on) was used in the CNN implementations.

4. Pooling stage: provides a summary statistic of several adjacent outputs and is

used for down-sampling, at the same time making the network invariant to shifts.

Convolution Stage

Batch Normalisation Stage

Detector Stage

Pooling Stage

Next layer

Input to layer

Figure 3.6: A pictorial representation of a convolutional unit, implemented in the

ConvUnit class (see Listing 3.5).
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Pooling

Pooling [11] is used in the implementation to modify the output of a convolutional unit

before it is fed to the next layer of the network, by replacing nearby values with a sum-

mary statistic of that region. Pooling functions allow down-sampling to be introduced

in the network, reducing the dimensionality of the tensor and thereby the subsequent

computational effort. This operation also creates translation invariance (see Figure 3.7),

which is useful for detecting features regardless of their position in the input.

0.3 0.8 0.2 0.1

0.8 0.8 0.8 0.2

Detector Stage

Pooling Stage

0.2 0.3 0.8 0.2

0.3 0.8 0.8 0.8

Detector Stage

Pooling Stage

Figure 3.7: The pooling operation over a 1D region of width 3, using a stride of 1.

Invariance is achieved as follows: the input to the detector stage in the leftmost diagram

has been shifted to the right by a single unit in the rightmost diagram, which is reflected

in the outputs of the pooling stage. Despite all of the input values from the detector stage

changing, only half of the values after the pooling stage have been affected.

As the deeper layers learn increasingly higher-level features, this invariance is important,

because the precise locations of lower-level features such as bass drum frequencies, or the

frequency patterns of a guitar solo are not important. Rather, it is the existence of these

features that matters to the network when predicting that the audio file can be tagged

with “rock”, for example. The stride of the pooling can determine the down-sampling

factor. For example, if the detector stage produces 6 outputs, and the pooling width is 3

with a stride of 2 units, then the pooling stage would reduce the representation size by a

factor of two as shown in Figure 3.8.
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0.3 0.3 0.3 0.8 0.2 0.1

0.8 0.8 0.8

Detector Stage

Pooling Stage

Figure 3.8: Downsampling over regions of width 3, using a stride of 2.

The ELU activation function

The ELU activation, introduced by Clevert, Unterthiner, and Hochreiter [9], alleviates

the vanishing gradient effect in a similar manner to that of the ReLU activation—for

non-negative values, both of them are identity functions with a constant gradient of 1:

f(x) =

{
x, if x > 0

α(exp(x)− 1), if x ≤ 0
(3.2)

and the derivative is given by:

f(x) =

{
1, if x > 0

f(x) + α, if x ≤ 0
(3.3)

For non-negative inputs, ELU is not contractive, unlike other activation functions (tanh

and sigmoid). For negative inputs, ELU saturates to a negative value determined by α.

Figure 3.9 depicts the ELU and ReLU activations, with α = 1.

−10 −8 −6 −4 −2 0
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f
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Figure 3.9: The ELU activation in blue plotted against the ReLU activation.
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ELUs aim to improve upon the performance of ReLUs by avoiding the bias introduced

by having an expected value of the activation greater than zero. Since ReLUs are non-

negative everywhere, ELUs have negative values, which brings the mean activation closer

to zero. This has been shown to result in faster learning, as ELUs bring the gradient

closer to the unit natural gradient [9].

Batch normalisation

Batch normalisation [14] was used in the implementation as it generally speeds up train-

ing. It is a regularization technique that seeks to reduce a phenomenon referred to as

internal covariate shift. Due to the hierarchical structure of the network, the input

distribution to a given layer depends on the input distribution of the preceeding layer.

Ioffe and Szegedy [14] explained that internal covariate shift occurs when updating the

parameters of a layer in the network. This means that layers must repeatedly re-adapt to

the change in input distribution.

The solution Ioffe and Szegedy devised is based on normalising the input distribution for

a given layer by the mean and variance of the corresponding mini-batch (denoted by k):

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]
(3.4)

For each activation x(k) a pair of parameters γ(k) and β(k) are used to scale and shift the

normalised value:

y(k) = γ(k)x̂(k) + β(k) (3.5)

During inference, the mean and variance statistics are fixed, since they are not using

moving averages as in the case of training. These moving averages facilitate the updates

of γ and β by measuring the model accuracy.

The batch-normalised network then performs inference using fixed statistics, gathered

during training over the entire training set.

3.2.3 Convolutional architectures

I have implemented three different CNN models, each being formed of several ConvUnit

objects that encompass a standard CNN building block. Each model inherits from the

AbstractConvModel class (see Listing 3.4) and incorporates the creation of TensorFlow

layer objects, thus allowing for a cleaner, modular interface.
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Listing 3.4: The AbstractConvModel is used to define all three models: k2c1, k1c2, and

k2c1. The build model method is overridden by each concrete instance of the abstract

class, and uses the ConvUnit class defined in Listing 3.5.

class AbstractConvModel:

def __init__(self , reuse , training_mode):

self._reuse = reuse

self._training_mode = training_mode

super ().__init__ ()

@abstractmethod

def build_model(self):

pass

The three convolutional networks I have implemented are named to define both kernel

shape (e.g. k1 for 1D kernels) and convolution dimension (e.g. c2 for 2D convolutions).

Inputs dimensions to the network are B × 96 × 1366 × 1 (batch size × number of mel-

frequency bands × number of samples across time × channels).

Listing 3.5: The ConvUnit class which is used to define a single convolutional unit (see

Figure 3.6).

class ConvUnit:

def __init__(self , pool_strides , pool_size , filters ,

kernel_size , axis , padding):

self._pool_size = pool_size

self._pool_strides = pool_strides

self._filters = _filters

self._kernel_size = kernel_size

self._padding = padding

self._axis = axis

def buildUnit(self , input_layer , training_mode=True):

# build the unit and return it

3.2.4 Architectures implemented

An in-depth description of network structures and calculations for the number of param-

eters follows, to aid the evaluation of each model in Chapter 4. Each of the architectures

implemented learns different features due to the differing kernel sizes and their complex-

ity is mainly given by the widths of the network layers. The layer width refers to the

number of feature maps (within convolutional layers) or the number of hidden units (in

fully-connected layers) [8].
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Trainable parameters

All the implemented models have been trained with approximately 1M parameters. The

number of trainable parameters can be computed by considering the number of parameters

in each layer L(n). In the convolutional case, the number of parameters is a function of

kernel size [K
(n)
1 , K

(n)
2 ], the number of channels in the input volume Cn−1 and the number

of channels in the output volume Cn. For the fully-connected units, the number of input

units I and output units O are considered.

For the convolutional layers, each filter has its own set of parameters per input channel.

Each filter thus requires Cn−1×K(n)
1 ×K(n)

2 parameters. Each filter produces an activation

map in the output volume, corresponding to the number of output channels Cn. A

convolutional layer therefore requires (Cn−1 × K
(n)
1 × K

(n)
2 ) × Cn + Cn parameters,

where the addition of Cn originates from the bias term shared by every neuron in a given

output channel.

Recall that in a fully-connected layer, every input unit has an edge to every output

unit. Defining |ln| as the number of inputs or outputs in layer n: a layer l(n) with |l(n−1)|
inputs and |l(n)| outputs therefore requires |l(n−1)| × |l(n)| weights and |l(n)| biases, one for

each output. The fully-connected layer thus requires a total of |l(n−1)| × |l(n)| + |l(n)|
trainable parameters.

Strides and padding

The implementation details of the CNNs require the definition of padded and non-padded

convolutional layers. A non-padded convolutional layer simply takes the input, performs

the convolution operation and outputs the feature map. A padded convolutional layer,

on the other hand, appends zeros to the input to ensure that all of the input locations are

“seen” by the convolution operator an equal number of times, such that the output dimen-

sions remain unchanged. In TensorFlow, a “valid” convolution adds no padding, whereas

the “same” convolution ensures that the input and output have the same dimensions.

Figures 3.10 and 3.11 show examples of the two padding modes.

3× 3 Input Layer
(2× 2) Filter

3× 3 Output Layer

Figure 3.10: Same mode: the [2, 2] output is padded with zeros to produce a [3, 3] output.
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3× 3 Input Layer
(2× 2) Filter (2× 2) Output Layer

Figure 3.11: Valid mode: when a [2 × 2] kernel is used with a stride of (1, 1) a [2, 2]

output is produced.

In general, the output dimensions of a convolutional layer [1] can be written as a function

of the input volume W , the padding P , the filter’s receptive field size F , and the stride

length S: (W −F +2P )/S+1. For example, in Figure 3.12 a stride of (1, 1) is used which

results in the filter being applied 4 times: it is applied at two positions in the x-direction

for each of the two positions in the y-direction.

Figure 3.12: An example of a 2D convolutional layer, with 3 [2 × 2] filters, a stride of

(1, 1) and no zero-padding. Neurons are represented by circles. The output volume is

3× 3 and consists of three channels: each channel is the activation map corresponding to

the response of each filter in the convolutional layer. Each neuron in the output volume

has a 2× 2 receptive field.
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Unit Name Layer type Input Size Output Size Width Kernels

ConvUnit1 ConvLayer b× 96× 1366× 1 b× 1× 1363× 152 152 [96× 4]

ELU b× 1× 1363× 152 b× 1× 1363× 152

ConvUnit2 ConvLayer b× 1× 1363× 152 b× 1× 1360× 152 152 [1× 4]

BatchNorm b× 1× 1360× 152 b× 1× 1360× 152

ELU b× 1× 1360× 152 b× 1× 1360× 152

MaxPooling b× 1× 1360× 152 b× 1× 340× 152

ConvUnit3 ConvLayer b× 1× 340× 152 b× 1× 337× 152 152 [1× 4]

BatchNorm b× 1× 337× 152 b× 1× 337× 152

ELU b× 1× 337× 152 b× 1× 337× 152

MaxPooling b× 1× 337× 152 b× 1× 84× 152

ConvUnit4 ConvLayer b× 1× 84× 304 b× 1× 81× 304 304 [1× 4]

BatchNorm b× 1× 81× 304 b× 1× 81× 304

ELU b× 1× 81× 304 b× 1× 81× 304

MaxPooling b× 1× 81× 304 b× 1× 20× 304

ConvUnit5 ConvLayer b× 1× 20× 304 b× 1× 17× 304 304 [1× 4]

BatchNorm b× 1× 17× 304 b× 1× 17× 304

ELU b× 1× 17× 304 b× 1× 17× 304

MaxPooling b× 1× 17× 304 b× 1× 4× 304

FlatteningLayer b× 1× 4× 304 b× 1216

DenseLayer1 b× 1216 b× 304 304

DenseLayer2 b× 304 b× 304 304

OutputLayer b× 304 b× 50 50

Table 3.2: The k2c1 network architecture. Width refers to the number of hidden units

in fully-connected layers or the number of feature maps in convolutional layers. The

convolutional layers for this model use valid padding and pooling sizes are all (1× 4).

k2c1

The first architecture I implemented was the k2c1 model [8]: a 2D-kernel, 1D-convolutional

architecture which consists of 5 ConvUnits and two fully-connected layers at the tail of

the network. The first convolutional unit learns 2D kernels that are convolved along the

time axis for the entire frequency band, compressing the information of the whole fre-

quency range into a single band. The following convolutional units learn 1D kernels for

convolution along the time axis. The network structure is described in Table 3.2, and the

number of trainable parameters for this architecture is calculated in Table 3.3.
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Kernel width Kernel height Number of filters Learnable parameters

96 4 152 58520

1 4 152 92568

1 4 152 92568

1 4 304 185136

1 4 304 369968

Input units Output units Learnable parameters

1216 304 369968

304 304 92720

304 50 15250

= 1.2767M ≈ 1M

Table 3.3: Calculations for the number of trainable parameters for k2c1. The first and

second halves show the calculations for the convolutional layers and the fully-connected

layers respectively.

k1c2

For comparison against k2c1, the second architecture I have implemented (detailed in

Table 3.4) is built from 4 ConvUnits that contain 1D convolutional layers with [1 × 4]

kernels. The max-pooling sizes are (1× 4)− (1× 5)− (1× 8)− (1× 8). The convolutional

layers have padding, such that the output dimensions of the convolution match the input

dimensions. Max pooling then produces summary statistics to reduce the dimensionality.

The output of the last ConvUnit is the same height as the input (96), resulting in the

feature map encoding a feature for each frequency band. Having only 4 ConvUnits reduces

the number of trainable parameters required, detailed in Table 3.5.

Unit Name Input Output Layer Width Kernel Pooling

ConvUnit1 b× 96× 1366× 1 b× 96× 341× 47 47 [1× 4] (1, 4)

ConvUnit2 b× 96× 341× 47 b× 96× 68× 47 47 [1× 4] (1, 5)

ConvUnit3 b× 96× 68× 47 b× 96× 8× 95 95 [1× 4] (1, 8)

ConvUnit4 b× 96× 8× 95 b× 96× 1× 95 95 [1× 4] (1, 8)

FlatteningLayer b× 96× 1× 95 b× 9120

DenseLayer1 b× 9120 b× 95 95

DenseLayer2 b× 95 b× 95 95

OutputLayer b× 95 b× 50 50

Table 3.4: The k1c2 network architecture.
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Kernel width Kernel height Number of filters Learnable parameters

1 4 47 235

1 4 47 8883

1 4 95 17955

1 4 95 36195

Input units Output units Learnable parameters

9120 95 866495

95 95 9120

95 50 4800

= 0.9437M ≈ 1M

Table 3.5: Calculations for the number of trainable parameters for k1c2.

k2c2

The third and final architecture I have implemented is k2c2 (detailed in Tables 3.6

and 3.7): a fully-convolutional network consisting of consists of 5 ConvUnits with [3× 3]

kernels, and pooling sizes (2× 4)− (2× 4)− (2× 4)− (3× 5)− (4× 4). The feature maps

in the final layer are 1-dimensional and cover the entire input rather than each frequency

band [8], as in k2c1 and k1c2, since the kernels convolve across both axes.

Unit Name Input Output Layer Width Kernel Pooling

ConvUnit1 b× 96× 1366× 1 b× 48× 341× 67 67 [3× 3] (2, 4)

ConvUnit2 b× 48× 341× 67 b× 24× 85× 135 135 [3× 3] (2, 4)

ConvUnit3 b× 24× 85× 135 b× 12× 21× 135 135 [3× 3] (2, 4)

ConvUnit4 b× 12× 21× 135 b× 4× 4× 203 203 [3× 3] (3, 5)

ConvUnit5 b× 4× 4× 203 b× 1× 1× 271 271 [3× 3] (4, 4)

FlatteningLayer b× 1× 1× 271 b× 271

OutputLayer b× 271 b× 50 50

Table 3.6: The k2c2 network architecture.



3.3. DEFINING LOSS FUNCTIONS 43

Kernel width Kernel height Number of filters Learnable parameters

3 3 67 670

3 3 135 81540

3 3 135 164160

3 3 203 246848

3 3 271 495388

Input units Output units Learnable parameters

271 50 13550

= 1.0022M ≈ 1M

Table 3.7: Calculations for the number of trainable parameters for k2c2.

3.3 Defining loss functions

Recall from earlier discussion (§2.6.1) the notion of a Bernoulli random variable (BRV).

Given that the presence of a tag is a BRV, let y denote the probability that a given song

is associated with a tag, as present in the empirical distribution ptrain(x), and ŷ denote

the model’s estimate of y, as given by the model distribution pmodel(x). The binary-cross

entropy in Equation 2.9 (§2.6.4) can then be written as:

m∑
i=1

ptrain(x)(logptrain(x)− logpmodel(x)) = y(logy − logŷ) + (1− y)(log(1− y)− log(1− ŷ))

(3.6)

The empirical distribution y is fixed for any given training set; only the model distribution

ŷ changes during training, so the following quantity—the binary cross-entropy loss

function—will be minimised:

L = −ylogŷ − (1− y)log(1− ŷ) (3.7)

3.4 Training and evaluating the models

This section follows the use of the ADAM optimiser, which is a variant of Stochastic

Gradient Descent, for training the CNN models. Algorithm 3 shows the process of training

for a number of epochs, and the use of mini-batching to perform updates.
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Algorithm 3 Training the CNN

for epoch in epochs do

while there are still more examples to train on do

run training operation and obtain loss value . compute loss using ADAM

training loss ← training loss + loss value

if at the end of the epoch then

add the average training loss to the data collector

initialise buffers for validation set predictions and corresponding targets

while there are still more examples to retrieve do

get the next batch of validation predictions

compute the loss

validation loss ← validation loss + new loss

for i in range(evaluation batch size) do

add each prediction, target pair from the batch to the buffers

end for

end while

add the average loss to the data collector

end if

end while

end for

3.4.1 Stochastic gradient descent (SGD)

Although traditional gradient descent [12] is effective, it is generally infeasible to update

the model after calculating the gradient over the entire dataset. Instead, SGD calculates

the gradient over a mini-batch of examples and uses this to update the model parameters.

The mini-batch gradient is an approximation of the gradient over the entire dataset.

To obtain an unbiased estimate of the gradient, mini-batching randomly selects m exam-

ples {x1, ...,xm} from the training data set [11] and takes the average.

Algorithm 4 Stochastic Gradient Descent (SGD)

1: Require: Learning rate αk
2: Require: Initial parameter θ

3: while there are still examples to see do

4: Obtain a mini-batch of m examples {x1, ...,xm} with corresponding targets y(i)

5: Compute the unbiased estimate of the gradient: ĝ← + 1
m
∇θL(f(x(i),y(i)))

6: Apply update θ ← θ − αkĝ
7: end while
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3.4.2 The ADAM optimiser

ADAM [15] is an adaptive learning rate optimisation algorithm [11] that addresses one

of the most time-consuming challenges related to the training of neural networks: tuning

hyper-parameters. Adjusting the learning rate can have profound effects on training

times and the optimality of the learned parameters. The algorithm, which accumulates

the gradients with respect to each parameter by taking exponentially weighted moving

averages, computes estimates of the first and second moments of the gradient and uses

these to perform parameter updates. The TensorFlow implementation of the algorithm

was used and has four parameters:

1. α: the learning rate (default value 0.001),

2. β1: the decay rate of the first moment of the gradient (default value 0.9),

3. β2: the decay rate of the second moment of the gradient (default value 0.999),

4. ε: for numerical stability (default value 1e-08).

ADAM stores estimates of the first and second moments of the gradient, which are used to

alter the learning rates for each parameter update. By computing the gradient of the loss

with respect to each of the parameters and using adaptive learning rates per-parameter,

they are being updated such that a better set of parameters is reached. This is achieved

by scaling the rates inversely proportional to the square root of the second moment of the

gradient, which is computed element-wise as the following:

gt =
1

m
∇Θ

∑
i

L(f(x(i); Θt−1),y(i)) (3.8)

Algorithm 5 The ADAM algorithm

Require: α . step size

Require: β1, β2 in [0, 1) . exponential decay rates for moment estimates

Require: ε . small constant for numerical stabilization

Require: Θ0 . initial parameter vector

m0 ← 0,v0 ← 0 . initialize 1st and 2nd moment variables

t← 0 . initialize time step

while stopping criterion not met do

Sample mini-batch of m examples from training set {x(1), ...,x(m)} with targets y(i)

t← t+ 1

gt ← 1
m
∇Θ

∑
i L(f(x(i); Θt−1),y(i)) . compute gradient wrt objective

mt ← β1mt−1 + (1− β1)gt . update biased first moment estimate

vt ← β2vt−1 + (1− β2)g2
t . update biased second moment estimate

m̂t ←mt/(
√

1− βt1) . correct bias in first moment

v̂t ← vt/(
√

1− βt2) . correct bias in second moment

Θt ← Θt−1 − αm̂t/(
√

v̂t + ε) . apply the update

end while

return Θt
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I used the TensorFlow implementation (see Listing 3.6) of the ADAM optimization algo-

rithm for computing the gradient, and (as mentioned in Section 3.3) the binary cross-

entropy loss function (§2.6.4), which computes the loss element-wise for each tag. Substi-

tuting Equation 3.7 (§3.3) into Equation 3.8 gives a closed expression for second moment

of the gradient used by ADAM:

gt =
1

m
∇θθθ
∑
i

−y(i)logf(x(i);θθθt−1)− (1− y(i))log(1− f(x(i);θθθt−1)) (3.9)

where f(x(i);θθθt−1) denotes the output of the network for batch i, using parameters θθθt−1

from the last epoch.

Listing 3.6: Setting up the loss function and optimisation algorithm in TensorFlow.

# Use the TensorFlow loss function implementation , taking the model

output and target output as arguments

loss_training = tf.losses.sigmoid_cross_entropy(multi_class_labels=

target_batch_training ,logits=training_model_output)

# Define the optimizer

adam_optimizer = tf.train.AdamOptimizer ()

# Construct a training operation

training_operation = adam_optimizer.minimize(loss=loss_training)

3.4.3 Evaluating the model

Data collection

The models were evaluated using the testing set, and a number of metrics were stored:

precision-recall, AUC-ROC and accuracy. At the end of every epoch, the DataCollector

module saves a file for later analysis, which required me to implement the aforementioned

metrics using functionality provided by the sci-kit learn package 7—a machine learning

and data mining library. I will define the metrics and discuss the results in the Evaluation

chapter.

Restoring a model

Checkpoints were saved at the end of every epoch to enable the restoration of trained

models for use in the tagging system and for further evaluation. The system loads the

relevant checkpoint file, reconstructs the graph, and then loads the saved model weights

and variables.

7http://scikit-learn.org/stable/

http://scikit-learn.org/stable/
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Figure 3.13: A UML diagram showing the class design for the DataCollector and its

interaction with the script.
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Chapter 4

Evaluation

This chapter discusses the testing process and suitable evaluation metrics for assessing the

performance of the CNN architectures, with results showing that the relative performances

of the models are in accordance with the paper [8]. I also analyse the potential of the best

performing model (k2c2 ) for music recommendation through visualisations of the learned

latent space and by investigating the tags given to several songs that were unseen during

training.

4.1 Testing

The music tagging system I have presented in the previous chapter requires interaction

between several modules. The latter thus required isolated testing before being integrated,

which was carried out using Python’s UnitTest module. Tests for ConvUnit, instances

of AbstractConvModel and EvaluationMetrics were created and run (see Figure 4.1).

This ensured that the ConvUnit and AbstractConvModel return correct tensors with the

corresponding output shapes. Additionally, the EvaluationMetrics method results were

asserted against pre-calculated values to establish that correct statistics can be provided.

Unit tests ensure modular correctness, but are insufficient in ensuring that the entire

system works as required. Since the project utilised the TensorFlow API, integration

tests were performed to test the main tagging system module, which utilises all the mod-

ules that previously underwent unit testing and the TensorFlow API. For all the CNN

models implemented, the training binary cross-entropy loss was monitored—if its value

is decreasing during training, then the parameters of the model are indeed being updated

to reach an optimal state. A graph of the training loss for k2c1 is shown in Figure 4.2.

As previously discussed in the Implementation chapter, the timeline of the project imposed

a great restriction in terms of the training time allowed, even when using a GPU. I have

therefore optimised the data pipeline for loading the dataset in batches from disk, which

has led to a drastic reduction of training times per epoch, as shown in Figure 4.3.

Perhaps most notably, the optimised pipeline has brought a significant improvement over

49
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Figure 4.1: Unit test results.

the training times reported by Choi et al. [8]. For example, they report a runtime of 2400

seconds per epoch for the k2c1 model, whereas my pipeline allows this to decrease more

than threefold to 727±8.38 seconds.

4.2 Performance evaluation

The lengthy pipeline optimisation process only allowed me to train the three architectures

for the following number of epochs—150 for k2c1 and k2c2, 89 for k1c2. During training,

the validation loss continued to generally decrease and so further performance improve-

ment can be expected in subsequent epochs. However, the results I have obtained, which

are described in the remained of this section, accomplish and significantly surpass the core

criterion of my project proposal for k2c1, furthermore achieving several extensions.

4.2.1 Accuracy

One method of evaluating the performance of the CNN models is to measure the per-tag

accuracy. The classifier was tested on the test set s of m (28,534) examples, giving the

output probabilities of the classifier hθ(x). The output probabilities were rounded up

(if ≥ 0.5) or down (if < 0.5), giving a binary outcome for each tag, and then compared

against the ground truth labels. If a given tag is associated with a song, an output of 1

from the classifier is deemed as a success; if, instead, the tag is not associated with the

song, an output of 0 is considered a success.

The per-tag accuracy score [12] (averaged over m samples) can be defined as:

accuracytag =
1

m

m∑
i=1

I[hθ(x(i))tag = y
(i)
tag] (4.1)
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Figure 4.2: The training loss for the k2c1 model.

Figure 4.3: The training times per epoch for each architecture. Each model has approx-

imately 1M trainable parameters. Error bars are shown (in black) and were constructed

using the Student’s t-Distribution at a 95% confidence level.
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For the accuracy scores, confidence intervals have been constructed over N = 3 training

sessions. Each training session was run for 30 epochs, and accuracy scores computed after

this period. It was a core criterion to achieve above 50% accuracy on each tag and this

has been achieved.

Since the sample size N is less than 30, the Student’s t-distribution1 was used to construct

a two-tailed 95% confidence interval for the mean accuracy score of each tag:

CItag = accuracytag ± t
s√
N

where s is the standard deviation.

Accuracy results for the k2c1 model

A core success criterion in the proposal was to obtain better-than-chance prediction (ac-

curacy above 50% for each tag and the lower bound of its confidence interval above 50%)

of the top-50 tags. This goal has been achieved: accuracy scores range from 81%–99%,

as presented in Tables 4.1 and 4.2.

1http://mathworld.wolfram.com/Studentst-Distribution.html

http://mathworld.wolfram.com/Studentst-Distribution.html
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Table 4.1: k2c1 accuracy results for genres.

Tag Accuracy score

heavy metal 98.0% ± 0.2%

indie pop 97.9% ± 0.6%

rnb 97.74% ± 0.02%

house 97.7% ± 0.2%

hard rock 97.6% ± 0.4%

acoustic 97.3% ± 2.7%

hip-hop 97.3% ± 1.8%

electro 97.2% ± 3.2%

funk 96.9% ± 3.3%

punk 96.9% ± 0.3%

metal 96.7% ± 0.6%

electronica 96.6% ± 0.6%

experimental 96.4% ± 5.3%

classic rock 96.3% ± 4.5%

alternative rock 96.2% ± 1.2%

progressive rock 96.1% ± 0.1%

country 96.0% ± 0.6%

indie rock 95.8% ± 3.3%

blues 95.7% ± 4.5%

soul 94.5% ± 4.9%

dance 94.4% ± 0.9%

folk 94.0% ± 4.5%

jazz 93.0% ± 3.7%

alternative 92.2% ± 1.0%

electronic 89.7% ± 5.1%

indie 88.9% ± 0.6%

pop 87.5% ± 0.5%

rock 81.8% ± 2.8%
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Table 4.2: k2c1 accuracy results for the moods, instruments and eras categories.

Tag Accuracy score

Moods:

happy 99.6% ± 0.1%

party 99.4% ± 0.1%

catchy 99.4% ± 0.1%

sad 99.4% ± 0.5%

sexy 99.2% ± 1.1%

easy listening 98.9% ± 1.1%

chill 98.8% ± 0.3%

beautiful 98.7% ± 0.6%

mellow 98.3% ± 0.5%

chillout 96.5% ± 1.8%

ambient 96.3% ± 0.5%

oldies 96.0% ± 0.6%

Instruments:

female vocalist 98.9% ± 1.4%

male vocalists 98.4% ± 0.4%

guitar 98.2% ± 1.6%

instrumental 94.6% ± 2.5%

female vocalists 91.2% ± 2.0%

Eras:

00s 98.4% ± 0.3%

70s 97.54% ± 0.04%

60s 97.3% ± 1.8%

90s 97.3% ± 0.7%

80s 94.9% ± 6.3%

Upon further inspection of the dataset during the preparation phase, I realised that accu-

racy is not the most suitable metric, as the MSD dataset is imbalanced. This can lead to

rare tags acheving high accuracies, which can provide a misleading indicator of the system

performance. Therefore, the following alternative metrics were used for the rest of the

evaluation: AUC-ROC, precision and recall—the former being used in [7], [8], and [10]

for assessing music-tagging systems.
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4.2.2 Precision and recall

When evaluating my music-tagging system, I found it more useful to consider alternative

performance measures for imbalanced data. If we take the test set s = {(x1, b1), ..., (xn, bn)}
of tuples (xi, bi) denoting the i-th test sample and the ground truth (binary label b ∈
{0, 1}) for the i-th test sample respectively, then we can define the following quantities:

• True positives (TP): the number of instances of labelling as positive a sample

that is positive:

TP = |{(x, 1) ∈ s|hθ(x) = 1}| (4.2)

• False positives (FP): the number of instances of labelling as positive a sample

that is negative:

FP = |{(x, 0) ∈ s|hθ(x) = 1}| (4.3)

• True negatives (TN): the number of instances of labelling as negative a sample

that is negative:

TN = |{(x, 0) ∈ s|hθ(x) = 0}| (4.4)

• False negatives (FN): the number of instances of labelling as negative a sample

that is positive:

FN = |{(x, 1) ∈ s|hθ(x) = 0}| (4.5)

where | • | denotes the cardinality of its argument.

Precision and recall are two metrics based on the number of true positives, false positives,

true negatives, and false negatives. Both of these properties are valuable metrics, since

it is often the case that we are required to trade off precision in the favour of recall,

or vice-versa. For example, since I am recommending music based upon the tags, it is

perhaps better to have a high precision, since erroneously tagging a song may lead to

poor recommendations. The two metrics, along with a third one that summarises them,

are defined as 2:

• Precision (PPV): the positive predictive value, defined as the ratio of true positives

to the sum of the true positives and false positives:

TP

TP + FP
(4.6)

summarises the ability of the classifier not to label as positive a sample that is

negative.

• Recall (TPR): the true positive rate, defined as the ratio true positives to the sum

of the true positives and false negatives:

TP

TP + FN
(4.7)

summarises the ability of the classifier to find all the positive samples.

2http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_

curve.html

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
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Figure 4.4: Average precision scores of the three architectures, each having 1M parame-

ters. The blue, orange and green denote the precision averages for k2c1, k1c2 and k2c2

respectively.

• Average precision3 (AP): a summary of the precision-recall curve as a weighted

mean of precisions obtained at each recall level, with the previous threshold used as

the weight:

AP =
∑
n

(Rn −Rn−1)Pn (4.8)

Figure 4.4 displays average precision scores for all models: k2c2 outperforms the other

two models for 32 of 50 tags.

4.2.3 AUC-ROC

The accuracy score metric has two caveats when dealing with class imbalances: fewer

instances of a tag occurrence increase the likelihood of a higher score, even if all the

predictions are incorrect. Secondly, the acceptability threshold is set at 0.5: this does not

consider other thresholds and fails to explain the certainty in the decision of the classifier.

AUC-ROC overcomes this by observing the TP- vs FP-rate for all possible thresholds. The

true positive rate can be plotted against the false positive rate for varying acceptability

thresholds to produce the receiver operator characteristic (ROC curve). The area

under the ROC curve (AUC) is referred to as the AUC-ROC metric.

Average AUC-ROCs for each structure are plotted in Figures 4.5 and 4.6, and are in

agreement (performance of k2c2 > k1c2 > k2c1 ) with the results reported in the pa-

per [8] (per-tag AUC-ROCs for each model are shown in Figures 4.7, 4.8, 4.9). k2c2

outperforms k2c1 for all tags, and k1c2 also outperforms k2c1 when averaged across all

tags (see Figure 4.6), which means I have achieved an extension goal: “implement more

architectures to improve performance”.

3http://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_

score.html

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
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Rather than output learned features into two fully connected layers as in k2c1 and k1c2,

k2c2 is instead fully-convolutional, and the performance gain can be attributed to

the first layer: each convolution is across both time frames and mel-frequency bands,

increasing the model’s ability to recognise higher-level features.

4.3 Using deep learning for music recommendation

4.3.1 An analysis of predictions

After the CNN model training was completed, the resulting tagging system could be easily

restored, using the checkpoint functionality described in the Implementation chapter. This

allowed songs from the test set to be fed to the system and generate tag predictions in

the form of 50-dimensional vectors. A selection of songs tagged with a variety of genres,

moods, instruments and eras are listed in Table 4.3. When comparing these predictions

with AllMusic4 and Spotify artist biographies5, genre predictions are consistent, including

the additional tags from moods, genres and instruments.

For some songs, such as “The Carol Of The Bells” by Frankie Valli & The Four Seasons,

the system predicts some tags—60s and instrumental, for example—with low confidence,

yielding probabilities less than 0.5. However, the existence of these tags is important

because it allows further differentiation between this song and other “oldies” songs. This

advanced level of insight into complex musical features is of key importance in using the

tags to drive music recommendation (§4.3.2) and consequently illustrates the potential of

these music tagging models to be part of a larger recommender system.

Artist Song title Tags Scores

Lou Reed / The Velvet Underground Femme Fatale indie 0.98

classic rock 0.87

guitar 0.41

Duke Ellington and His Famous Orchestra Ko-Ko jazz 1.0

LCD Soundsystem Sound of Silver electronic 1.0

electronica 0.81

Frankie Valli & The Four Seasons The Carol Of The Bells oldies 1.0

male vocalist 0.90

instrumental 0.15

60s 0.11

Table 4.3: Tag predictions for various songs from the test set.

4https://www.allmusic.com/
5https://support.spotify.com/us/using_spotify/features/artist-profile/

https://www.allmusic.com/
https://support.spotify.com/us/using_spotify/features/artist-profile/
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Figure 4.7: AUCs for each of the top-50 tags obtained from the k2c1 model with 1M

parameters.
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Figure 4.8: AUCs for each of the top-50 tags obtained from the k1c2 model with 1M

parameters.

ha
pp

y
ca

tc
hy 00

s
m

al
e 

vo
ca

lis
ts

se
xy sa
d

be
au

tif
ul

pa
rty 90

s
M

el
lo

w
fe

m
al

e 
vo

ca
lis

t
ch

ill
ea

sy
 li

st
en

in
g

al
te

rn
at

iv
e

gu
ita

r
ro

ck
P

ro
gr

es
si

ve
 ro

ck
po

p
70

s
al

te
rn

at
iv

e 
ro

ck
fe

m
al

e 
vo

ca
lis

ts
in

di
e 

po
p

cl
as

si
c 

ro
ck

ch
ill

ou
t

ac
ou

st
ic

el
ec

tro
ni

ca
ex

pe
rim

en
ta

l
in

di
e

fu
nk 80

s
fo

lk
in

di
e 

ro
ck

el
ec

tro
ni

c
ha

rd
 ro

ck
so

ul
in

st
ru

m
en

ta
l

ol
di

es
bl

ue
s

am
bi

en
t

60
s

da
nc

e
el

ec
tro rn

b
co

un
try

pu
nk

H
ou

se
ja

zz
he

av
y 

m
et

al
m

et
al

H
ip

-H
op

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95

A
U

C
-R

O
C

AUC-ROC scores for the k2c2 model
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4.3.2 Exploring the latent representation of songs

Another extension involves a visual exploration of the predictions from the tagging system,

in order to evaluate the potential of suggesting similar songs to users.

Each 50-tag vector can be seen as a representation of the corresponding song, lying in 50-

dimensional space. To visualise songs that were considered similar by the music tagger, I

took the predicted tags of songs in the test set (unseen during training) and processed the

50-dimensional vectors using t-Distributed Stochastic Neighbour Embedding (t-SNE) [20].

This is a technique for dimensionality reduction that aims to preserve the distances be-

tween points xi and xj in high-dimensional space and the mapped-to points yi and yj in

the low-dimensional space.

t-SNE describes the similarity of two data points xi and xj based on the conditional prob-

ability pj|i that xi would chose xj as its neighbour, if chosen in proportion to its probability

density centred at xi. t-SNE uses the Student t-distribution to compute the similarities

between two points in low-dimensional space. The variance σ2 is computed using the

user-specified perplexity—a smooth measure of the effective number of neighbours.

The technique minimizes the KL divergence between the joint probability distribution

P, in the high-dimensional space, and the joint probability distribution Q in the low-

dimensional space:

C = KL(P ||Q) =
∑
i

∑
j

pj|ilog
pj|i
qj|i

, (4.9)

where pii, qii = 0, the pairwise similarities in the low-dimensional space are given by:

qj|i =
exp(−||yi − yj||2)∑
k 6=l exp(−||yk − yl||2)

(4.10)

and the pairwise similarities in high-dimensional space are given by:

pj|i =
exp(−||xi − xj||2)/2σ2∑
k 6=l exp(−||xk − xl||2)/2σ2

(4.11)

The results that follow were obtained using tags predicted by the system and the t-SNE

functionality available in the sci-kit learn library. After the dimensionality reduction

to the 2D latent space, Figure 4.10 shows the clustering6 of 10,000 songs based on the

tags predicted by the k2c2 model, and the corresponding artists are shown in Figure 4.11.

The t-SNE plot in Figure 4.12 shows a cluster of blues and jazz artists. Table 4.4 shows a

selection of artists and song tags appearing in the cluster. Songs from each of these artists

share labels “blues” and “jazz”, demonstrating that the clusters formed by t-SNE make

use of common tags between artists, which further improves the music recommendation

abilities of the system.

6Artists are omitted here to allow for clearer visualisation of the clustering.
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Figure 4.10: A t-SNE plot of 10,000 songs based on their predicted top-50 tags.

Artist Song title Tags Scores

Cab Calloway Doin’ The Rumba jazz 1.0

blues 0.58

Otis Rush Right Place Wrong Time blues 0.95

jazz 0.49

Muddy Waters / Son Simms Four Ramblin’ Kid Blues blues 1.0

jazz 0.50

Table 4.4: Tag predictions for songs by artists appearing in the t-SNE cluster shown in

Figure 4.12.

Playlist curation, artist discovery and song recommendations

High-level representations of audio files are an extremely powerful and useful tool for

recommendation. The t-SNE plots provide a way of visualising clusters present between

songs (and implicitly artists), which can be easily used to drive artist or song discovery.

More generally, to explore new music, whenever a user listens to a song, the title or artist

can be found in the latent space and nearby points used to provide new suggestions.

Another application is playlist curation, which is similar to music recommendation,

but starts from a random song vector. The playlist can then be constructed based on the

closest k neighbours of the song vector in the latent space.
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Chapter 5

Conclusion

The project has been a success, exceeding all success criteria and demonstrating that deep

learning architectures are powerful tools for content-based music recommendation.

5.1 Achievements

Deep Learning for Music Recommendation was a hugely successful project. All core

objectives were completed: the tagging system is fully functional and the k2c1 model

achieves better-than-chance performance on all top-50 tags. Moreover, two of the three

initially proposed extensions were achieved. The first one shows that the performance of

the k2c1 model was improved on each tag, by implementing two additional models: k1c2

and k2c2 (§3.2.4).

The goal of the project was to build a CNN system capable of predicting the top-50

last.fm (§3.1.1) tags associated with a given song, which has been successfully achieved

(§4.3.1). Its ability to predict these tags has, in turn, allowed me to complete the second

extension by exploring (§4.3.2) content-based music recommendation using dimensionality

reduction techniques. This has the potential of enabling automatic artist discovery, song

recommendations and playlist curation (§4.3.2)—features heavily invested in by the music

industry to further improve the way users interact with and listen to music.

5.2 Lessons learned

Throughout the project, I have learned not only theoretical aspects of machine learn-

ing, but also about the typical workflows and challenges encountered during the practical

implementation of these kinds of systems. The usage of commonly used libraries and

frameworks has enabled me to experience development practices used in industry: de-

veloping with frameworks and libraries requires additional skills, often surpassing the

ones acquired from developing a project from scratch—for example, researching extensive

documentation and learning through experimentation.

65
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Understanding how to build a complex system in TensorFlow had a steep learning

curve. The implementation required more advanced insight into the computation model

of TensorFlow than I had initially (and perhaps näıvely) thought. The project has also

taught me how to work in a scenario that involves big data: waiting for files to download,

scripts to run and CNNs to train1 has been a true test of patience, but has only strength-

ened my abilities as a computer scientist. Testing through a combination of unit tests

and integration tests has been of great importance, in the same way that planning has.

The training of deep convolutional neural networks requires careful planning; if I were to

do the project again, I would allocate much more time to training and implementation.

One difficult problem encountered during the past year has been training the CNNs for

days and not obtaining the expected results: the process of implementation and training

should not be underestimated. Finally, I feel that my academic writing skills have signif-

icantly improved and further developed my ability to describe theoretical and practical

concepts concisely—a vital skill for computer scientists.

5.3 Further work

As concluded in the Evaluation chapter, the fully-convolutional k2c2 model was the best-

performing architecture, confirming the findings of Choi et al. [8]. Further research into

fully-convolutional networks and even recurrent neural networks has been undertaken to

further improve the music tagging capabilities of these systems. Therefore, other models

(possibly incorporating recurrent mechanisms) can be implemented and their performance

compared to the ones already described in the previous chapter. Moreover, training for

the existing architectures could be resumed from the existing checkpoints to see whether

the results I have reported can be improved.

Research in music recommendation is thriving as more and more users are seeking mu-

sic recommendation services. As in other information retrieval tasks, adding a form of

relevance feedback to this process would improve the system even more. Having the

ability to monitor the “success” of recommendations, based on the duration of a song

that users listen to or a rating given by the user, would further strengthen the quality of

recommendations.

1Training was done for 150 epochs, which equates to roughly three days for k2c2.



Bibliography

[1] Cs231n: Convolutional Neural Networks for Visual Recognition, 2018. http:

//cs231n.stanford.edu/.

[2] I. Sutskever A. Krizhevsky and G. E. Hinton. ImageNet Classification with Deep

Convolutional Neural Networks,. Advances in Neural Information Processing Sys-

tems, 25, 2012.

[3] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Gregory S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian J. Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
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Introduction and Description

With the influx of users moving towards music-streaming services such as
Spotify, Apple Music, and Pandora, content providers are now, more than
ever, pushing the boundaries of music classification and recommendation.
Features like Discover Weekly on Spotify and Apple’s automated song sug-
gestions are just two examples of this fascinating area of Computer Science.
A plethora of Machine Learning techniques have been and are used for clas-
sifying songs by genre, mood, instrument and era. Many content-rich, data-
driven music-streaming applications have fundamentally changed how users
listen to and discover new music.

Collaborative filtering [4] is one of the methods used for recommending
new songs and artists and is based on historical usage data, clustering users
together based on the songs they’ve listened to. At first sight, this seems
like a perfectly suitable method of recommending songs, but it ignores new
songs, new artists and bands that haven’t yet been listened to frequently.
Music discovery should be oriented towards giving users the best possible
recommendations, a possible approach to this being to analyse the audio sig-
nal itself.

Many Music Information Retrieval Systems have a two-stage approach,
starting with feature extraction from audio signals, and subsequently using
these features as input to a classifier or regressor such as logistic regression
or support vector machines. The problem with this approach, however, is
that any audio signal must first be analysed using complex DSP techniques
to find such features.

This project will explore the use of CNNs for music tagging, which re-
quires only an audio spectrogram of the audio signal, and as such vastly re-
duces the time spent on pre-processing. I will be generating spectrograms of
the audio files, and using these as input to a Convolutional Neural Network
(CNN), a model which has been actively used in a number of music clas-
sification tasks. Spectrograms will be provided as input because CNNs are
in general well-suited to extracting features from images, and they provide
perhaps the best representation of the audio signal for CNN architectures.

The CNN architecture I have chosen to implement [3] consists of 5 con-
volutional layers followed by 2 fully-connected layers. The output of the
convolutional layers are fed into the fully connected layers, which act as the
classifier, outputting the probability that each of the top-50 tags can be as-
sociated with the song. Sigmoid functions are used as activation at output
nodes to facilitate multi-label classification.
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Starting Point

I will be starting my Part II project with the following prior experience and
knowledge:

• basic machine learning concepts from the Part IB Artificial Intelligence
course

• basic knowledge of Python language

The project will thus require that I research and explore the following:

• the theory and background to ANNs with a focus on CNNs

• Python programming for TensorFlow’s API (the only version that has
stability guarantees)

• content from the Digital Signal Processing course (Michaelmas 2017) on
spectrograms of audio-signals

• audio signal processing frameworks

Project Structure and Substance

Key concepts

The project will involve substantial research and knowledge acquisition in
the theory of neural networks, an understanding of CNNs for music classifi-
cation, and the network architectures that can be used. In addition, a ground-
level knowledge of Digital Signal Processing techniques will be needed to
understand the implementation of pre-existing libraries for audio-signal pro-
cessing, which will be used in generating the spectrograms.

Major work items

My project is to build a music classification system using CNNs. This will in-
volve classifying songs according to the top-50 relevant tags, acquired from
the last.fm subset of the Million Song Dataset [2]. Sample audio will be
fetched from services such as 7Digital. The tags include genre, mood, era
and instruments. The classification system (CS) will be implemented through
the use of Convolutional Neural Networks which will use the 2D kernel, 1D
convolution model k2c1 described in the paper [3]. This model has been cho-
sen specifically as it is motivated by structures for music tagging and genre
classification.

The CNN system I will be implementing takes as input a spectrogram
of an audio clip and outputs the probability that each of the top-50 tags is
associated with the song.

The implementation of the CNN will require extensive knowledge of the
TensorFlow API. It was decided that the implementation language be Python,
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as TensorFlow only offers API stability guarantees for Python. The training
and testing of the CNN will require use of a GPU, which will be obtained
from the Computational Biology Group at the Computer Laboratory.

It is worth noting that the substantial part of the project consists of the
CNN implementation, the choice of network architecture, and the training of
the network. The recommendation system itself relies purely on the output
of the CNN, so it is essential that the CNN is tested and evaluated before a
recommendation system is built.

Using the top-50 tags for songs in the Million Song Dataset, a t-SNE plot
can be made using songs in the dataset, to evaluate the potential of the system
for clustering similar songs and being part of a recommendation system.

t-distributed stochastic neighbour embedding (t-SNE) is a machine learn-
ing algorithm for dimensionality reduction, which will project the top-50 tags
of a song into a 2D space. The more similar two songs are, the closer they
are to one another in some n-dimensional space. t-SNE preserves distances
between points in higher dimensional space, so those points that are close
together (i.e. similar songs) in a higher dimension will map to points that are
close together in 2D space. The clustering of songs in a 2D space would then
allow recommendations to be made, based upon a simple distance metric
between points.

Methods of Evaluation

The implementation can be evaluated using the last.fm tags included in the
Million Song Dataset. The majority of the evaluation will be purely quanti-
tative; I have chosen to use AUC-ROC, as it is widely used for classification
problems and will allow a direct comparison between the implementation
found in [3] and my own.

AUC-ROC (Area Under the Receiver Operating Characteristic curve) is
a metric actively used for assessing the performance of classifiers. Count-
ing false-positives and true-positives will indicate incorrectly generated tags
and correctly generated tags respectively. To allow for a comparison of per-
formance between my implementation and that of [3], I will be reproducing
the results for AUC-ROC per tag, and then averaging the AUC-ROC over all
tags to obtain a single measure for the classifier’s performance. Using this
metric will allow a comparison between my implementation and the paper’s
implementation of the CNN.

For all models, evaluation will be carried out using the holdout method,
which splits the dataset into training and test partitions, training on the for-
mer and testing on the latter.

Success Criteria

The core project will be considered successful upon completing the follow-
ing:
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1. A working implementation of a Convolutional Neural Network

2. The ability of the network to perform better-than-chance prediction (ac-
curacy above 50% for each tag and the lower bound of its confidence
interval above 50%) of the top-50 tags for a given audio file.

Extensions

Should I complete the core objectives, I will aim to do the following, in order
of preference:

1. Analyse the high-level representations learned by the model by pro-
ducing t-SNE plots for various representative subsets of the songs in
the dataset, and explore its use in music recommendation.

2. Implement other models in the paper [3] to improve the performance
of the system and enable further opportunity for comparison between
my implementation and that of the paper

3. Implement an attention mechanism [1] for the CRNN model above to
improve results even further

Project Plan

Week 0 (21st October—27th October)
Begin researching the theory behind convolutional neural networks, and
the theory behind DSP techniques for spectrograms.

Weeks 1 & 2 (28th October—10th November)
Continue researching the theoretical aspects, and look at libraries to be
used for the audio-signal processing.
Milestone: The theory topics have been covered and can be applied to the
project.

Weeks 3 & 4 (11th November—24th November)
Start writing code snippets and gain familiarity with the libraries to be
used. Implement a simple ANN with TensorFlow, and learn about how
CNNs are implemented with TensorFlow.
Milestone: Familiar with the libraries and implemented the audio-signal
pre-processing module.

Weeks 5 & 6 (25th November—8th December)
Implement the CNN
Milestone: A working implementation of the CNN has been completed.

Weeks 7 & 8 (9th December—22nd December)
Slack time for delays and unexpected issues with the CNN implemen-
tation. Can begin training and testing the CNN using the Million Song
Dataset.
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Weeks 9 & 10 (23rd December–5th January)
Finish the training and testing of the network’s performance.
Milestone: The network provides a better-than-chance prediction of the
top-50 tags for a given song.

Weeks 11 & 12 (6th January—19th January)
Perform hyperparameter optimisation to improve the accuracy of the net-
work. Start implementing other models.
Milestone: Completion of training and testing. The CNN now has im-
proved accuracy.

Weeks 13 & 14 (20th January—2nd February)
Additional slack time for delays in training and testing. Begin to write
progress report and evaluate the project.
Milestone: Progress report finished and submitted before 2nd February.
Completed implementation of other models.

Weeks 15 & 16 (3rd February—16th February)
Revise the evaluation based on feedback, and write the presentation. Con-
tinue testing other models.

Weeks 17 & 18 (17th February—2nd March)
Analyse the potential of the system for recommendation, using t-SNE.
Milestone: t-SNE plots are finalised. Evaluation of other models com-
pleted.

Weeks 19 & 20 (3rd March—16th March)
Start writing up the dissertation, focussing on the Introduction chapter.
Milestone: Introduction chapter has been completed.

Weeks 21 & 22 (17th March—30th March)
Write up the Preparation and Implementation chapters of the dissertation.
Milestone: Preparation and Implementation chapters have been completed.

Weeks 23 & 24 (31st March—13th April)
Write up the Evaluation and Conclusion chapters of the dissertation. Amend
any changes suggested by my supervisor and/or DoS.
Milestone: The Introduction, Preparation, Implementation, Evaluation and
Conclusion chapters of the dissertation are completed and ready for sub-
mission to supervisor.

Weeks 25 & 26 (14th April—27th April)
Send dissertation to supervisor by 16th April and amend any changes from
comments received.

Weeks 27 & 28 (28th April—11th May)
Slack time for changes to write-up.
Milestone: Dissertation has been completed and submitted by 11th May
to my DoS for approval.
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Week 29 (12th May—18th May)
Slack time for any final comments received from my DoS.
Milestone: Final Dissertation submitted before 16th May.

Resource Declaration

My Macbook Pro (2.5 GHz Intel Core i7, 16 GB 1600 MHz DDR3 RAM, AMD
Radeon R9 M370X 2048 MB) running macOS 10.12 Beta (16A313a) will be
used for the project implementation and initial testing. Should the training
take too long, I will use a GPU acquired from the department. I accept full
responsibility for the equipment used and will use MCS machines should
failure arise.

Regular back-ups of the project data will be undertaken, with the project
implementation being stored locally, on-disk with usage of BitBucket which
provides free private repositories and git for version control. The write-up
will be synced with iCloud Drive and also be stored in a repository on Bit-
Bucket, using git for version control.



9

References

[1] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural ma-
chine translation by jointly learning to align and translate”. In: arXiv
(2014).

[2] Thierry Bertin-Mahieux et al. “The Million Song Dataset”. In: Proceedings
of the 12th International Conference on Music Information Retrieval (ISMIR
2011). 2011.

[3] K. Choi et al. “Convolutional Recurrent Neural Networks for Music
Classification”. In: (2016). URL: https://arxiv.org/pdf/1609.04243.
pdf.

[4] Sander Dieleman. “Recommending music on Spotify with deep learn-
ing”. In: (2014). URL: http : / / benanne . github . io / 2014 / 08 / 05 /
spotify-cnns.html.


	Introduction
	Project motivation
	Background
	Supervised learning
	Automatic music tagging
	Convolutional neural networks

	Related work

	Preparation
	Starting point
	Requirements analysis
	Choice of tools
	Programming languages, libraries and licenses
	Development practices
	Development environment
	Backup

	Neural networks
	A single neuron
	Deep feedforward networks
	Activation functions

	Maximum Likelihood Estimation (MLE)
	Multi-label classification
	Bernoulli distribution
	Two-class classification
	Multi-label classification
	Binary cross entropy
	Data representations for music tagging

	Convolutional neural networks
	Convolution
	Convolutional layers


	Implementation
	Setting up the data pipeline
	The Million Song Dataset
	Data preprocessing
	Data pipeline

	Implementing the CNN models
	TensorFlow
	Convolutional unit
	Convolutional architectures
	Architectures implemented

	Defining loss functions
	Training and evaluating the models
	Stochastic gradient descent (SGD)
	The ADAM optimiser
	Evaluating the model


	Evaluation
	Testing
	Performance evaluation
	Accuracy
	Precision and recall
	AUC-ROC

	Using deep learning for music recommendation
	An analysis of predictions
	Exploring the latent representation of songs


	Conclusion
	Achievements
	Lessons learned
	Further work

	Bibliography
	Project Proposal

